Origami-inspired folding enables integrated design and manufacturing of intricate kinematic mechanisms and structures. Here, we present a hierarchical development process of foldable robotic platforms as combinations of fundamental building blocks to achieve arbitrary levels of complexity and functionality. Rooted in theoretical linkage kinematics, designs for static structures and functional units, respectively, offer rigidity and mobility for robotic systems. The proposed approach is demonstrated on the design, fabrication, and experimental verification of three distinct types of hexapedal locomotion platforms covering a broad range of features and use cases.
Issue Section:
Research Papers
References
1.
Onal
, C. D.
, Wood
, R. J.
, and Rus
, D.
, 2011
, “Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,” IEEE International Conference on Robotics and Automation
(ICRA
), Shanghai, May 9–13, pp. 4608
–4613
.2.
Onal
, C. D.
, Wood
, R. J.
, and Rus
, D.
, 2012
, “An Origami-Inspired Approach to Worm Robots
,” IEEE Trans. Mechatronics
, 18
(2
), pp. 430
–438
.3.
Hoover
, A. M.
, and Fearing
, R. S.
, 2008
, “Fast Scale Prototyping for Folded Millirobots
,” IEEE International Conference on Robotics and Automation
(ICRA 2008
), Pasadena, CA, May 19–23, pp. 886
–892
.4.
Hawkes
, E.
, An
, B.
, Benbernou
, N.
, Tanaka
, H.
, Kim
, S.
, Demaine
, E.
, Rus
, D.
, and Wood
, R.
, 2010
, “Programmable Matter by Folding
,” Proc. Natl. Acad. Sci.
, 107
(28
), pp. 12441
–12445
.5.
Felton
, S. M.
, Tolley
, M. T.
, Shin
, B.
, Onal
, C. D.
, Demaine
, E. D.
, Rus
, D.
, and Wood
, R.
, 2013
, “Self-Folding With Shape Memory Composites
,” Soft Matter
, 9
(32
), pp. 7688
–7694
.6.
Miyashita
, S.
, Onal
, C. D.
, and Rus
, D.
, 2013
, “Self-Pop-Up Cylindrical Structure by Global Heating
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Tokyo, Nov. 3–7, pp. 4065
–4071
.7.
Felton
, S.
, Tolley
, M.
, Demaine
, E.
, Rus
, D.
, and Wood
, R.
, 2014
, “A Method for Building Self-Folding Machines
,” Science
, 345
(6197
), pp. 644
–646
.8.
Silverberg
, J. L.
, Evans
, A. A.
, McLeod
, L.
, Hayward
, R. C.
, Hull
, T.
, Santangelo
, C. D.
, and Cohen
, I.
, 2014
, “Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,” Science
, 345
(6197
), pp. 647
–650
.9.
Gao
, W.
, Ramani
, K.
, Cipra
, R. J.
, and Siegmund
, T.
, 2013
, “Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,” ASME J. Mech. Des.
, 135
(11
), p. 111009
.10.
Mehta
, A. M.
, and Rus
, D.
, “An End-to-End System for Designing Mechanical Structures for Print-and-Fold Robots
,” IEEE International Conference on Robotics and automation
(ICRA 2014
), Hong Kong, May 31–June 7, pp. 1460
–1465
.11.
Baisch
, A. T.
, Sreetharan
, P.
, and Wood
, R. J.
, 2010
, “Biologically-Inspired Locomotion of a 2g Hexapod Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Taipei, Taiwan, Oct. 18–22, pp. 5360
–5365
.12.
Birkmeyer
, P.
, Peterson
, K.
, and Fearing
, R. S.
, 2009
, “Dash: A Dynamic 16g Hexapedal Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2009
), St. Louis, MO, Oct. 10–15, pp. 2683
–2689
.13.
Soltero
, D. E.
, Julian
, B. J.
, Onal
, C. D.
, and Rus
, D.
, 2013
, “A Lightweight Modular 12-DOF Print-and-Fold Hexapod
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS
), Tokyo, Nov. 3–7, pp. 1465
–1471
.14.
Agheli
, M.
, Faal
, S. G.
, Chen
, F.
, Gong
, H.
, and Onal
, C. D.
, 2014
, “Design and Fabrication of a Foldable Hexapod Robot Towards Experimental Swarm Applications
,” IEEE International Conference on Robotics and Automation
(ICRA
), Hong Kong, May 31–June 7, pp. 2971
–2976
.15.
Rubenstein
, M.
, Ahler
, C.
, and Nagpal
, R.
, 2012
, “Kilobot: A Low Cost Scalable Robot System for Collective Behaviors
,” IEEE International Conference on Robotics and Automation
(ICRA
), St. Paul, MN, May 14–18, pp. 3293
–3298
.16.
Siegwart
, R.
, Nourbakhsh
, I. R.
, and Scaramuzza
, D.
, 2011
, Introduction to Autonomous Mobile Robots
, MIT Press
, Cambridge, MA
.17.
Diegel
, O.
, Badve
, A.
, Bright
, G.
, Potgieter
, J.
, and Tlale
, S.
, 2002
, “Improved Mecanum Wheel Design for Omni-Directional Robots
,” Australasian Conference on Robotics and Automation
, Auckland
, Nov. 27–29, pp. 117
–121
.18.
Howell
, L. L.
, 2001
, Compliant Mechanisms
, Wiley-Interscience
, Hoboken, NJ
.19.
Norton
, R. L.
, 2004
, Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, McGraw-Hill
, New York
.20.
Sung
, C.
, Demaine
, E. D.
, Demaine
, M. L.
, and Rus
, D.
, 2013
, “Joining Unfoldings of 3D Surfaces
,” ASME
Paper No. DETC2013-12692.21.
Wood
, R.
, Avadhanula
, S.
, Sahai
, R.
, Steltz
, E.
, and Fearing
, R.
, 2008
, “Microrobot Design Using Fiber Reinforced Composites
,” ASME J. Mech. Des.
, 130
(5
), p. 052304
.22.
Arora
, J.
, 2004
, Introduction to Optimum Design
, Academic Press
, San Diego
.23.
Agheli
, M.
, and Nestinger
, S. S.
, 2010
, “Inverse Kinematics for Arbitrary Orientation of Hexapod Walking Robots With 3-DOF Leg Motion
,” 15th International Association of Science and Technology for Development (IASTED) Conference on Robotics and Applications (RA 2010), Cambridge, MA, Nov. 1–3, Paper No. 706-093.Copyright © 2016 by ASME
You do not currently have access to this content.