Origami-inspired folding enables integrated design and manufacturing of intricate kinematic mechanisms and structures. Here, we present a hierarchical development process of foldable robotic platforms as combinations of fundamental building blocks to achieve arbitrary levels of complexity and functionality. Rooted in theoretical linkage kinematics, designs for static structures and functional units, respectively, offer rigidity and mobility for robotic systems. The proposed approach is demonstrated on the design, fabrication, and experimental verification of three distinct types of hexapedal locomotion platforms covering a broad range of features and use cases.

References

1.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2011
, “
Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, May 9–13, pp.
4608
4613
.
2.
Onal
,
C. D.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2012
, “
An Origami-Inspired Approach to Worm Robots
,”
IEEE Trans. Mechatronics
,
18
(
2
), pp.
430
438
.
3.
Hoover
,
A. M.
, and
Fearing
,
R. S.
,
2008
, “
Fast Scale Prototyping for Folded Millirobots
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
886
892
.
4.
Hawkes
,
E.
,
An
,
B.
,
Benbernou
,
N.
,
Tanaka
,
H.
,
Kim
,
S.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2010
, “
Programmable Matter by Folding
,”
Proc. Natl. Acad. Sci.
,
107
(
28
), pp.
12441
12445
.
5.
Felton
,
S. M.
,
Tolley
,
M. T.
,
Shin
,
B.
,
Onal
,
C. D.
,
Demaine
,
E. D.
,
Rus
,
D.
, and
Wood
,
R.
,
2013
, “
Self-Folding With Shape Memory Composites
,”
Soft Matter
,
9
(
32
), pp.
7688
7694
.
6.
Miyashita
,
S.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2013
, “
Self-Pop-Up Cylindrical Structure by Global Heating
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
4065
4071
.
7.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-Folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
8.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
9.
Gao
,
W.
,
Ramani
,
K.
,
Cipra
,
R. J.
, and
Siegmund
,
T.
,
2013
, “
Kinetogami: A Reconfigurable, Combinatorial, and Printable Sheet Folding
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111009
.
10.
Mehta
,
A. M.
, and
Rus
,
D.
, “
An End-to-End System for Designing Mechanical Structures for Print-and-Fold Robots
,”
IEEE International Conference on Robotics and automation
(
ICRA 2014
), Hong Kong, May 31–June 7, pp.
1460
1465
.
11.
Baisch
,
A. T.
,
Sreetharan
,
P.
, and
Wood
,
R. J.
,
2010
, “
Biologically-Inspired Locomotion of a 2g Hexapod Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Taipei, Taiwan, Oct. 18–22, pp.
5360
5365
.
12.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
Dash: A Dynamic 16g Hexapedal Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2009
), St. Louis, MO, Oct. 10–15, pp.
2683
2689
.
13.
Soltero
,
D. E.
,
Julian
,
B. J.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2013
, “
A Lightweight Modular 12-DOF Print-and-Fold Hexapod
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Tokyo, Nov. 3–7, pp.
1465
1471
.
14.
Agheli
,
M.
,
Faal
,
S. G.
,
Chen
,
F.
,
Gong
,
H.
, and
Onal
,
C. D.
,
2014
, “
Design and Fabrication of a Foldable Hexapod Robot Towards Experimental Swarm Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, May 31–June 7, pp.
2971
2976
.
15.
Rubenstein
,
M.
,
Ahler
,
C.
, and
Nagpal
,
R.
,
2012
, “
Kilobot: A Low Cost Scalable Robot System for Collective Behaviors
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), St. Paul, MN, May 14–18, pp.
3293
3298
.
16.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
,
MIT Press
,
Cambridge, MA
.
17.
Diegel
,
O.
,
Badve
,
A.
,
Bright
,
G.
,
Potgieter
,
J.
, and
Tlale
,
S.
,
2002
, “
Improved Mecanum Wheel Design for Omni-Directional Robots
,”
Australasian Conference on Robotics and Automation
,
Auckland
, Nov. 27–29, pp.
117
121
.
18.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley-Interscience
,
Hoboken, NJ
.
19.
Norton
,
R. L.
,
2004
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
New York
.
20.
Sung
,
C.
,
Demaine
,
E. D.
,
Demaine
,
M. L.
, and
Rus
,
D.
,
2013
, “
Joining Unfoldings of 3D Surfaces
,”
ASME
Paper No. DETC2013-12692.
21.
Wood
,
R.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052304
.
22.
Arora
,
J.
,
2004
,
Introduction to Optimum Design
,
Academic Press
,
San Diego
.
23.
Agheli
,
M.
, and
Nestinger
,
S. S.
,
2010
, “
Inverse Kinematics for Arbitrary Orientation of Hexapod Walking Robots With 3-DOF Leg Motion
,” 15th International Association of Science and Technology for Development (IASTED) Conference on Robotics and Applications (RA 2010), Cambridge, MA, Nov. 1–3, Paper No. 706-093.
You do not currently have access to this content.