Origami-inspired design is an emerging field capable of producing compact and efficient designs. Compliant hinges are proposed as a way to replicate the folding motion of paper when using nonpaper materials. Compliant hinges function as surrogate folds and can be defined as localized reduction of stiffness. The purpose of this paper is to organize and evaluate selected surrogate folds for use in compliant mechanisms. These surrogate folds are characterized based on the desired motion as well as motions typically considered parasitic. Additionally, the surrogate folds' ability to rotate through large deflections and their stability of center of rotation are evaluated. Existing surrogate folds are reviewed and closed-form solutions presented. A diagram intended as a straightforward design guide is presented. Areas for potential development in the surrogate fold design space are noted.

References

1.
Demaine
,
E.
,
2001
, “
Folding and Unfolding Linkages, Paper, and Polyhedra
,”
Discrete and Computational Geometry
(Lecture Notes in Computer Science, Vol. 2098),
J.
Akiyama
,
M.
Kano
, and
M.
Urabe
, eds.,
Springer
,
Berlin
, pp.
113
124
.
2.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Rob. Res.
,
27
(
5
), pp.
613
627
.10.1177/0278364908090235
3.
Dai
,
J. S.
,
2008
, “
Stiffness Characteristics of Carton Folds for Packaging
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022305
.10.1115/1.2813785
4.
Dureisseix
,
D.
,
2012
, “
An Overview of Mechanisms and Patterns With Origami
,”
Int. J. Space Struct.
,
27
(
1
), pp.
1
14
.10.1260/0266-3511.27.1.1
5.
Portrait
,
P.
, and
Bonnain
,
J.
,
1997
, “
Carton Folding Mechanism for Wraparound Cartons
,” U.S. Patent No. 5,664,401.
6.
Lu
,
L.
, and
Akella
,
S.
,
2000
, “
Folding Cartons With Fixtures: A Motion Planning Approach
,”
IEEE Trans. Rob. Autom.
,
16
(
4
), pp.
346
356
.10.1109/70.864227
7.
Olsen
,
B. M.
,
Issac
,
Y.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Utilizing a Classification Scheme to Facilitate Rigid-Body Replacement for Compliant Mechanism Design
,”
ASME
Paper No. DETC2010-28473.10.1115/DETC2010-28473
8.
Olsen
,
B. M.
,
Hopkins
,
J. B.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Culpepper
,
M. L.
,
2009
, “
A Proposed Extendable Classification Scheme for Compliant Mechanisms
,”
ASME
Paper No. DETC2009-87290.10.1115/DETC2009-87290
9.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.10.1115/1.1900149
10.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
, eds.,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
11.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Magleby
,
S. P.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(11), p.
111005
.10.1115/1.4025372
12.
Kruibayashi
,
K.
,
Tsuchita
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.10.1016/j.msea.2005.12.016
13.
Schenk
,
M.
, and
Guest
,
S. D.
,
2010
, “
Origami Folding: A Structural Engineering Approach
,”
5th International Meeting of Origami Science, Mathematics, and Education
(5OSME), Singapore, July 13–17, pp.
291
303
.
14.
Klett
,
Y.
, and
Drechsler
,
K.
,
2010
, “
Designing Technical Tessellations
,”
5th International Meeting of Origami Science, Mathematics, and Education
(5OSME), Singapore, July 13–17, pp.
305
322
.
15.
Ross
,
T.
,
1982
, “
Inflatable Apparatus and Methods of Constructing and Utilizing Same
,” U.S. Patent No. 4,351,544.
16.
Wu
,
W.
, and
You
,
Z.
,
2010
, “
Modeling Rigid Origami With Quaternions and Dual Quaternions
,”
Proc. R. Soc.
,
466
(
2119
), pp.
2155
2174
.10.1098/rspa.2009.0625
17.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
Hoboken, NJ
.
18.
Greenberg
,
H. C.
,
Gong
,
M. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.10.5194/ms-2-217-2011
19.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.10.1115/1.4000523
20.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.10.1016/j.mechmachtheory.2009.05.015
21.
Lombontiu
,
2003
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
22.
Tian
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Zhong
,
Y.
,
2010
, “
Three Flexure Hinges for Compliant Mechanism Designs Based on Dimensionless Graph Analysis
,”
Precis. Eng.
,
34
(
1
), pp.
92
100
.10.1016/j.precisioneng.2009.03.004
23.
Wilding
,
S. E.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2012
, “
Introduction of Planar Compliant Joints Designed for Combined Bending and Axial Loading Conditions in Lamina Emergent Mechanisms
,”
Mech. Mach. Theory
,
56
(
1
), pp.
1
15
.10.1016/j.mechmachtheory.2012.05.007
24.
Ferrell
,
D. B.
,
Isaac
,
Y. F.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
Development of Criteria for Lamina Emergent Mechanism Flexures With Specific Application to Metals
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031009
.10.1115/1.4003538
You do not currently have access to this content.