In this work, we present a new class of tristable mechanism called double Young tristable mechanisms (DYTMs), which connect two prestrained Young bistable mechanisms to create three distinct stable equilibrium positions. A three-degree-of-freedom pseudorigid-body (RPB) model is proposed to accurately predict the kinetostatic behaviors of both Young mechanisms and DYTMs. An optimization-based design method is also presented for DYTMs. Two DYTM prototypes were designed based on the method and machined out of polypropylene sheets. Both of the prototypes exhibit tristability, which demonstrate the feasibility of achieving tristability through connecting two prestrained Young mechanisms. The successful prototyping also indicates that the proposed three degree-of-freedom (3DOF) model is capable of identifying feasible designs for DYTMs.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mech.
,
8
(
1
), pp.
304
326
.10.1109/TMECH.2003.809156
3.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.10.1016/j.mechmachtheory.2009.09.009
4.
Zhao
,
J.
,
Gao
,
R.
,
Yang
,
Y.
,
Huang
,
Y.
, and
Hu
,
P.
,
2011
, “
A Bidirectional Acceleration Switch Incorporating Magnetic-Fields-Based Tristable Mechanism
,”
IEEE/ASME Trans. Mech.
,
99
(
2
), pp.
1
8
.10.1115/DETC2011-47678
5.
Tolou
,
M.
,
Estevez
,
P.
, and
Herder
,
J. L.
,
2011
, “
Collinear-Type Statically Balanced Compliant Micro Mechanism (SB-CMM): Experimental Comparison Between Pre-Curved and Straight Beams
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Aug. 28–31
,
Washington, DC
, Paper No. DETC2011-47678.
6.
Chen
,
G.
, and
Zhang
,
S.
,
2011
, “
Fully-Compliant Statically-Balanced Mechanisms Without Prestressing Assembly: Concepts and Case Studies
,”
Mech. Sci.
,
2
(
2
), pp.
169
174
.10.5194/ms-2-169-2011
7.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.10.1115/1.4005865
8.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1999
, “
Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
416
423
.10.1115/1.2829477
9.
Hwang
,
I.
,
Shim
,
Y.
, and
Lee
,
J.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
954
.10.1088/0960-1317/13/6/318
10.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
, pp.
137
146
.10.1109/JMEMS.2004.825308
11.
Masters
,
N. D.
, and
Howell
,
L. L.
,
2003
, “
A Self-Retracting Fully Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
12
, pp.
273
280
.10.1109/JMEMS.2003.811751
12.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.10.1109/JMEMS.2005.859089
13.
Sönmez
,
Ü.
, and
Tutum
,
C. C.
,
2008
, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
130
(
4
), p.
042304
.10.1115/1.2839009
14.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2003
, “
Identification of Compliant Pseudo-Rigid-Body Mechanism Configurations Resulting in Bistable Behavior
,”
ASME J. Mech. Des.
,
125
, pp.
701
708
.10.1115/1.1625399
15.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
, pp.
657
666
.10.1115/1.1760776
16.
Limaye
,
P.
,
Ramu
,
G.
,
Pamulapati
,
S.
, and
Ananthasuresh
,
G. K.
,
2012
, “
A Compliant Mechanism Kit With Flexible Beams and Connectors Along With Analysis and Optimal Synthesis Procedures
,”
Mech. Mach. Theory
,
49
, pp.
21
39
.10.1016/j.mechmachtheory.2011.07.008
17.
Han
,
J. S.
,
Muller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
, pp.
1198
1203
.10.1115/1.2771577
18.
Gerson
,
Y.
,
Krylov
,
S.
,
Ilic
,
B.
, and
Schreiber
,
D.
,
2008
, “
Large Displacement Low Voltage Multistable Micro Actuator
,”
Proceedings of the IEEE 21st International Conference on Micro Electro Mechanical Systems
, pp.
463
466
.
19.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
, p.
021002
.10.1115/1.3013316
20.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
, p.
025011
.10.1088/0960-1317/19/2/025011
21.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2009
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.10.1115/1.4000529
22.
Pham
,
H.-T.
, and
Wang
,
D.-A.
,
2011
, “
A Quadristable Compliant Mechanism With a Bistable Structure Embedded in a Surrounding Beam Structure
,”
Sens. Actuators, A
,
167
, pp.
438
448
.10.1016/j.sna.2011.02.044
23.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
24.
Pendleton
,
T. M.
, and
Jensen
,
B. D.
,
2007
, “
Development of a Tristable Compliant Mechanism
,”
Proceedings of 12TH IFToMM World Congress
, Vol.
A835
,
June 18–21
,
Besançon, France
.
25.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Roach
,
G. M.
,
2001
, “
Bistable Compliant Mechanism
,” U.S. Patent No. 6,215,081 B1.
26.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.10.1115/1.3046148
27.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
Precis. Eng.
,
35
(
3
), pp.
505
511
.10.1016/j.precisioneng.2011.02.006
28.
Oh
,
Y. S.
,
2008
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms
,” Ph.D dissertation,
The University of Michigan
,
Ann Arbor
.
You do not currently have access to this content.