With a new type of multifingered hands that raise a new philosophy in the construction and study of a multifingered hand, this paper is a follow-on study of the kinematics of the metamorphic multifingered hand based on finger constraint equations. The finger constraint equations lead to a comprehensive mathematical model of the hand with a reconfigurable palm which integrates all finger motions with the additional palm motion. Singular values of the partitioned Jacobian matrix in their analytical form are derived and applied to obtaining analytical solution to inverse kinematics of a complete robotic hand. The paper for the first time solves this integrated motion and the multifingered hand model with the singular value decomposition and extra degrees of freedom are examined with the singular value analysis to avoid the singularities. The work identifies finger displacement and velocity with effect from the articulated palm and presents a new way of analyzing a multifingered robotic hand.

References

1.
Dai
,
J. S.
, 2005, “
Robotic Hand With Palm Section Comprising Several Parts Able to Move Relative to Each Other
,” Patent WO/2005/105391, Priority Date: 10 November 2005, International Patent PCT/GB2005/001665, UK Patent No. GB04 09548.5, 2004, Europe Patent No. EP05740527.6, U.S. Patent No. US11/587,766, China Patent No. CN200580018189.6.
2.
Park
,
J.
,
Chung
,
W.-K.
, and
Youm
,
Y.
, 1996, “
Characteristics of Optimal Solutions in Kinematic Resohutions of Redundancy
,”
IEEE Trans. Rob. Autom.
,
12
(
3
), pp.
471
478
.
3.
Deo
,
A. S.
, and
Walker
,
I. D.
, 1997, “
Minimum Effort Inverse Kinematics for Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
5
), pp.
767
775
.
4.
Gravagne
,
I. A.
, and
Walker
,
I. D.
, 2000, “
On the Structure of Minimum Effort Solutions With Application to Kinematic Redundancy Resolution
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
855
863
.
5.
Choi
,
B. W.
,
Won
,
J. H.
, and
Chung
,
M. J.
, 1995, “
Evaluation of Dexterity Measures for a 3-Link Planar Redundant Manipulator Using Constraint Locus
,”
IEEE Trans. Rob. Autom.
,
11
(
2
), pp.
282
285
.
6.
Klein
,
C. A.
,
Chu-Jenq
,
C.
, and
Ahmed
,
S.
, 1995, “
A New Formulation of the Extended Jacobian Method and Its Use in Mapping Algorithmic Singularities for Kinematically Redundant Manipulators
,”
IEEE Trans. Rob. Autom.
,
11
(
1
), pp.
50
55
.
7.
Ahuactzin
,
J. M.
, and
Gupta
,
K. K.
, 1999, “
The Kinematic Roadmap: A Motion Planning Based Global Approach for Inverse Kinematics of Redundant Robots
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
653
669
.
8.
Nenchev
,
D. N.
, 1992, “
Restricted Jacobian Matrices of Redundant Manipulators in Constrained Motion Tasks
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
584
597
.
9.
Romdhane
,
L.
, and
Duffy
,
J.
, 1990, “
Kinestatic Analysis of Multifingered Hands
,”
Int. J. Rob. Res.
,
9
(
6
), pp.
3
18
.
10.
Podhorodeski
,
R. P.
,
Goldenberg
,
A. A.
, and
Fenton
,
R. G.
, 1993, “
A Null-Space Solution of the Inverse Kinematics of Redundant Manipulators Based on a Decomposition of Screws
,”
ASME Trans. J. Mech. Des.
,
115
(
3
), pp.
530
539
.
11.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
, 2001, “
Reciprocity-Based Resolution of Velocity Degeneracies (Singularities) for Redundant Manipulators
,”
Mech. Mach Theory
,
36
(
3
), pp.
397
409
.
12.
Nokleby
,
S. B.
, and
Podhorodeski
,
R. P.
, 2003, “
Identifying Multi-Dof-Loss Velocity Degeneracies in Kinematically-Redundant Manipulators
,”
Mech. Mach. Theory
,
39
(
2
), pp.
201
213
.
13.
Carretero
,
J. A.
,
Ebrahimi
,
I.
, and
Boudreau
,
R.
, 2012, “
Overall Motion Planning for Kinematically Redundant Parallel Manipulators
,”
ASME Trans. J. Mech. Rob.
,
4
(
2
), pp.
024502
-1–024502-
5
.
14.
Zhao
,
J.
,
Chu
,
F.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
, 2012, “
Actuation Schemes of a Spatial 3-PPRR Parallel Mechanism
,”
J. Mech. Eng. Sci. Proc. IMechE.
,
226
(
1
), pp.
228
241
.
15.
Ghosal
,
A.
, and
Roth
,
B.
, 1988, “
A New Approach for Kinematic Resolution of Redundancy
,”
Int. J. Rob. Res.
,
7
(
2
), pp.
22
35
.
16.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W.-K.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
, 2008, “
Analytical Inverse Kinematic Computation for 7-Dof Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1131
1142
.
17.
Cui
,
L.
, and
Dai
,
J. S.
, 2010, “
A Darboux-Frame-Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
383
388
.
18.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
, 2009, “
A High Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1216
1227
.
19.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
, 2009, “
Inverse-Kinematics-BasedControl of a Redundantly Actuated Platform for Rehabilitation,” Invited to Submit to Special Issue of Dynamics and Control of Parallel Manipulators
,
J. Syst. Control Eng. Proc. IMechE, Part I
,
223
(
1
), pp.
53
70
.
20.
Kircanski
,
M.
, 1995, “
Symbolic Singular Value Decomposition for Simple Redundant Manipulators and Its Application to Robot Control
,”
Int. J. Rob. Res.
,
14
(
4
), pp.
382
398
.
21.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
,
36
(
5
), pp.
633
651
.
22.
Dai
,
J. S.
, and
Jones
,
J. R.
, 2002, “
Null Space Construction Using Cofactors From a Screw Algebra Context
,”
Proc. R. Soc. London
,
458
(2024), pp.
1845
1866
.
23.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
, 2009, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
24.
Dai
,
J. S.
, and Rees
Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
Trans. ASME, J. Mech. Des.
,
121
(
3
), pp.
375
382
.
25.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
, 2010, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
,”
Trans. ASME, J. Mech. Rob.
,
132
(
12
), pp.
121001
-1–121001-11.
26.
Li
,
S.
, and
Dai
,
J. S.
2012, “
Structure Synthesis of Single-Driven Metamorphic Mechanisms Based on the Augmented Assur Groups
,”
ASME Trans. J. Mech. Rob.
,
4
(
3
), pp.
031004
-1–031004-
8
.
27.
Cui
,
L.
, and
Dai
,
J.
, 2011, “
Posture, Workspace and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME Trans. J. Mech. Rob.
,
133
(
2
), pp.
1
8
.
28.
Dai
,
J. S.
,
Zoppi
,
M.
, and
Kong
,
X. W.
, 2009,
Editorial Preface in Reconfigurable Mechanisms and Robots
,
KC Edizioni
,
London, UK
.
29.
Zhang
,
K.
,
Fang
,
Y.
,
Fang
,
H.
, and
Dai
,
J. S.
, 2010, “
Geometry and Constraint Analysis of the Three-Spherical Kinematic Chain Based Parallel Mechanism
,”
ASME Trans. J. Mech. Rob.
,
2
(
3
), pp.
031014
-1–031014-
7
.
30.
McCarthy
,
J. M.
, 2011, “
21st Century Kinematics: Synthesis, Compliance, and Tensegrity
,”
ASME Trans. J. Mech. Rob.
,
3
(
2
), pp.
020201
-1–020201-
3
.
31.
Müller
,
A.
, 2011, “
On the Manifold Property of the Set of Singularities of Kinematic Mappings: Modeling, Classification, and Genericity
,”
Trans. ASME, J. Mech. Rob.
,
3
(
1
), pp.
011006
-1–011006-
8
.
32.
Kong
,
X.
,
Gosselin
,
C.
, and
Ritchie
,
J.
, 2011, “
Forward Displacement Analysis of a Linearly Actuated Quadratic Spherical Parallel Manipulator
,”
Trans. ASME, J. Mech. Rob.
,
3
(
1
), pp.
011007
-1–011007-
6
.
33.
Ruggiu
,
M.
, 2010, “
Kinematic and Dynamic Analysis of a Two-Degree-of-Freedom Spherical Wrist
,”
ASME Trans. J. Mech. Rob.
,
3
(
2
), pp.
031006
-1–031006-
10
.
34.
Cui
,
L.
, and
Dai
,
J. S.
, 2011, “
Axis Constraint Analysis and Its Resultant 6R Double-Centered Overconstrained Mechanisms
,”
ASME Trans. J. Mech. Rob.
,
3
(
3
), pp.
031004
-1–031004-
9
.
35.
Halverson
,
P. A.
,
Bowden
,
A. E.
, and
Howell
,
L. L.
, 2011, “
A Pseudo-Rigid-Body Model of the Human Spine to Predict Implant-Induced Changes on Motion
,”
ASME Trans. J. Mech. Rob.
,
3
(
4
), pp.
031004
-1–031004-
7
.
36.
Wu
,
J.
,
Purwar
,
A.
, and
Ge
,
Q. J.
, 2010, “
Interactive Dimensional Synthesis and Motion Design of Planar 6R Single-Loop Closed Chains via Constraint Manifold Modification
,”
ASME Trans. J. Mech. Rob.
,
2
(
3
), pp.
031012
-1–031012-
8
.
37.
Rosati
,
G.
,
Zanotto
,
D.
, and
Agrawal
,
S. K.
, 2011, “
On the Design of Adaptive Cable-Driven Systems
,”
ASME Trans. J. Mech. Rob.
,
3
(
2
), pp.
021004
-1–021004-
13
.
38.
Liu
,
H.
,
Gosselin
,
C.
, and
Laliberté
, 2012, “
Conceptual Design and Static Analysis of Novel Planar Spring-Loaded Cable-Loop-Driven Parallel Mechanisms
,”
ASME Trans. J. Mech. Rob.
,
4
(
2
), pp.
021001
-1–021001-
11
.
39.
Azizian
,
K.
,
Cardon
,
P.
, and
Moore
,
B.
, 2012, “
Classifying the Boundaries of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms by Visual Inspection
,”
ASME Trans. J. Mech. Rob.
,
4
(
2
), pp.
024503
-1–024503-
5
.
40.
Kerr
,
J.
, and
Roth
,
B.
, 1986, “
Analysis of Multifingered Hands
,”
Int. J. Rob. Res.
,
4
(
4
), pp.
3
17
.
41.
Hunt
,
K. H.
, 1987, “
Robot Kinematics: A Compact Analytical Inverse Solutionfor Velocities
,”
ASME J. Mech., Transm., Autom. Des.
,
109
(
11
), pp.
42
49
.
42.
Lawson
,
C. L.
, and
Hanson
,
R. J.
, 1974,
Solving Least Squares Problems
,
Prentice-Hall, Inc., Englewood Cliffs
,
New Jersey
.
43.
Kircanski
,
M.
, 1995, “
Symbolic Singular Value Decomposition for Simple Redundant Manipulators and Its Application to Robot Control
,”
Int. J. Rob. Res.
,
14
(
4
), pp.
382
398
.
You do not currently have access to this content.