This paper presents a geometric approach for design and synthesis of deployable/foldable single loop mechanisms with pure revolute joints. The basic kinematic chains with symmetric mobility are first synthesized, and an intuitive geometric method is proposed for the mobility analysis of these kinematic chains. The deployable/foldable single loop mechanisms can be regarded as a combination of the basic kinematic chains with nontrivial mobility intersection, under this approach, the 5R to 8R single loop mechanisms with symmetric mobility are synthesized systematically. The method for determining the positions of the joint axes on polyhedral links is also proposed, so that the mechanism can be fully deployed or fully folded without suffering from physical interference. Under this framework, a class of novel deployable/foldable single loop mechanisms is developed. The computer-aided design models for typical examples are built to illustrate their feasibility.

References

1.
Gantes
,
C.J.
, 2001,
Deployable Structures: Analysis and Design
,
WIT Press
,
Boston, MA
.
2.
Hanaor
,
A.
, and
Levy
,
R.
, 2001, “
Evaluation of Deployable Structures for Space Enclosures
,”
Int. J. Space Struct.
,
16
, pp.
211
229
.
3.
3
Pellegrino
,
S.
, ed., 2001,
Deployable Structures,International Center for Mechanical Sciences
,
CISM Courses and Lectures No. 412
,
Springer-Verlag
,
New York
.
4.
Puiga
,
L.
,
Barton
,
A.
, and
Rando
,
N.
, 2010, “
Review:A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
.
5.
Chen
,
Y.
, 2003, “
Design of Structural Mechanism
,” Ph.D. thesis, University of, Oxford, UK.
6.
Chen.
,
Y.
, and
You
,
Z.
, 2009, “
Two-Fold Symmetrical 6R Foldable Frames and Their Bifurcations
,”
Int. J. Solids Struct.
,
46
(
25–26
), pp.
4504
4514
.
7.
Liu
,
S.Y.
, and
Chen
,
Y.
, 2009, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
.
8.
Chen
,
Y.
, and
You
,
Z.
, 2008, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. London, Ser. A
,
464
, pp.
1275
1283
.
9.
Chen
,
Y.
, and
You
,
Z.
, 2007, “
Square Deployable Frame for Space Application: Part II: Realization
,”
Proc. Inst. Mech. Eng., Part G: J. Aeros. Eng.
,
221
(
1
), pp.
37
45
.
10.
10
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
, 2005, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
11.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
12.
Zhang
,
K. T.
,
Dai
,
J. S.
, and
Fang
,
Y. F.
, 2010, “
Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism
”,
ASME J. Mech. Des.
,
132
(
12
), p.
121001
.
13.
Xue
,
C.
,
Ting
,
K.-L.
,
Wang
,
J.
, 2011, “
Mobility Criteria of Planar Single-Loop N-Bar Chains With Prismatic Joints
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011011
.
14.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q
, 2009, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
15.
Dai
,
J. S.
,
Huang
,
Z.
,
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
220
229
.
16.
Gogu
,
G.
, 2005, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory
,
40
(
9
), pp.
1068
1097
.
17.
Zhen
,
H.
,
Li
,
Qinchuan
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using Constraint-Synthesis Method
,”
Int. J. Robot. Res.
,
22
(
1
), pp.
59
79
.
18.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
8
), pp.
719
730
.
19.
Perez
,
A.
,
McCarthy
,
J. M.
, 2002, “
Bennett’s Linkage and the Cylindroid
,”
Mech. Mach. Theory
37
, pp.
1245
1260
.
20.
Myard
,
F. E.
, 1931, “
Contribution à la géométrie des systèmes articulés
,”
Soc. Math. Fr.
,
59
, pp.
183
210
.
21.
Bricard
,
R.
, 1927,
Lecons de cinématique, Tome II Cinématique Appliquée
,
Gauthier-Villars
,
Paris
, pp.
7
12
.
You do not currently have access to this content.