Full rotatability identification is a problem frequently encountered in linkage analysis and synthesis. The full rotatability of a linkage refers to a linkage, in which the input may complete a continuous rotation without the possibility of encountering a dead center position. In a complex linkage, the input rotatability of each branch may be different. This paper presents a unified and comprehensive treatment for the full rotatability identification of six-bar and geared five-bar linkages, regardless of the choice of input joints or reference link. A general way to identify all dead center positions and the associated branches is discussed. Special attention and detail discussion is given to the more difficult condition, in which the input is not given through a joint in the four-bar loop or to a gear link. A branch without a dead center position has full rotatability. Using the concept of joint rotation space, the branch of each dead center position, and hence, the branch without a dead center position can be identified. One may find the proposed method to be generally and conceptually straightforward. The treatment covers all linkage inversions.

1.
Ting
,
K. L.
, and
Dou
,
X. H.
, 1996, “
Classification and Branch Identification of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory
0094-114X,
31
(
3
), pp.
283
295
.
2.
Ting
,
K. -L.
, 1994, “
Mobility Criteria of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
29
(
2
), pp.
251
264
.
3.
Shyu
,
J. H.
, and
Ting
,
K. L.
, 1994, “
Invariant Link Rotatability of N-Bar Kinematic Chains
,”
J. Mech. Des.
1050-0472,
116
, pp.
343
347
.
4.
Ting
,
K. L.
, 1986, “
Five-Bar Grashof Criteria
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
533
537
.
5.
Ting
,
K. L.
, 1989, “
Mobility Criteria of Single-Loop N-Bar Linkages
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
504
507
.
6.
Ting
,
K. L.
, and
Liu
,
Y. W.
, 1991, “
Rotatability Laws for N-Bar Kinematic Chains and Their Proof
,”
J. Mech. Des.
1050-0472,
113
(
1
), pp.
32
39
.
7.
Ting
,
K. L.
, 2008, “
On the Input Joint Rotation Space and Mobility of Linkages
,”
J. Mech. Des.
1050-0472,
130
(
9
), p.
092303
.
8.
Dou
,
X. H.
, and
Ting
,
K. L.
, 1996, “
Branch Identification of Geared Five-Bar Chains
,”
J. Mech. Des.
1050-0472,
118
(
3
), pp.
384
389
.
9.
Davis
,
H. P.
, and
Chase
,
T. R.
, 1994, “
Stephenson Chain Branch Analysis: Four Generic Stationary Configurations and One New Linkage Polynomial
,”
ASME Design Engineering Division
, DE
70
(
1
), pp.
359
367
.
10.
Pennock
,
G. R.
, and
Kamthe
,
G. M.
, 2006, “
Study of Dead-Centre Positions of Single-Degree-of-Freedom Planar Linkages Using Assur Kinematic Chains
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
(
7
), pp.
1057
1074
.
11.
Shai
,
O.
, and
Polansky
,
I.
, 2006, “
Finding Dead-Point Positions of Planar Pin-Connected Linkages Through Graph Theoretical Duality Principle
,”
J. Mech. Des.
1050-0472,
128
(
3
), pp.
599
609
.
12.
Tsai
,
C. C.
, and
Wang
,
L. T.
, 2006, “
On the Dead-Centre Position Analysis of Stephenson Six-Link Linkages
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
220
(
9
), pp.
1393
1404
.
13.
Yan
,
H. S.
, and
Wu
,
L. L.
, 1989, “
On the Dead-Center Positions of Planar Linkage Mechanisms
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
, pp.
40
46
.
14.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
, 1998, “
Identification and Classification of the Singular Configurations of Mechanisms
,”
Mech. Mach. Theory
0094-114X,
33
(
6
), pp.
743
760
.
15.
Kohli
,
D.
,
Pan
,
C. A.
, and
Dhingra
,
A. K.
, 2000, “
Double Points and Unstable Configurations of Stephenson-I, II, and III Mechanisms
,”
Proceedings of the DETC ‘00 ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
16.
Chase
,
T. R.
, and
Mirth
,
J. A.
, 1993, “
Circuits and Branches of Single Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
(
2
), pp.
223
230
.
17.
Davis
,
H. P.
,
Chase
,
T. R.
, and
Mirth
,
J. A.
, 1994, “
Circuit Analysis of Stephenson Chain Six-Bar Mechanisms
,”
ASME Design Engineering Division
, DE
70
(
1
), pp.
349
358
.
18.
Mirth
,
J. A.
, and
Chase
,
T. R.
, 1995, “
Circuit Rectification for Four Precision Position Synthesis of Stephenson Six-Bar Linkages
,”
ASME J. Mech. Des.
1050-0472,
117
(
4
), pp.
644
646
.
19.
Mirth
,
J. A.
, and
Chase
,
T. R.
, 1993, “
Circuit Analysis of Watt Chain Six-Bar Mechanisms
,”
J. Mech. Des.
1050-0472,
115
(
2
), pp.
214
222
.
20.
Mirth
,
J. A.
, and
Chase
,
T. R.
, 1995, “
Circuit Rectification for Four Precision Position Synthesis of Four-Bar and Watt Six-Bar Linkages
,”
J. Mech. Des.
1050-0472,
117
(
4
), pp.
612
619
.
21.
Watanabe
,
K.
, and
Katoh
,
H.
, 2004, “
Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type
,”
Mech. Mach. Theory
0094-114X,
39
(
10
), pp.
1081
1099
.
22.
Foster
,
D. E.
, and
Cipra
,
R. J.
, 1998, “
Assembly Configurations and Branches of Planar Single-Input Dyadic Mechanisms
,”
J. Mech. Des.
1050-0472,
120
(
3
), pp.
381
386
.
23.
Guo
,
X. N.
, and
Chu
,
J. K.
, 2004, “
Mobility of Stephenson Six-Bar Chains—Part I: Circuit and Circuit Defect
,”
Proceedings of the DETC ‘04 ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
24.
Tsai
,
C. C.
, and
Wang
,
L. T.
, 2007, “
Branch Identification and Motion Domain Analysis of Stephenson Type Six-Bar Linkages
,”
J. Mech. Eng. Sci.
0022-2542,
221
(
5
), pp.
589
604
.
25.
Ting
,
K. L.
,
Xue
,
C. Y.
,
Wang
,
J.
, and
Currie
,
K. R.
, 2009, “
Stretch Rotation and Complete Mobility Identification of Watt Six-Bar Chains
,”
Mech. Mach. Theory
0094-114X,
44
(
10
), pp.
1877
1886
.
26.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
New York
.
27.
Di Gregorio
,
R.
, 2007, “
A Novel Geometric and Analytic Technique for the Singularity Analysis of One-DOF Planar Mechanisms
,”
Mech. Mach. Theory
0094-114X,
42
(
11
), pp.
1462
1483
.
28.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
29.
White
,
N.
, and
Whiteley
,
W.
, 1987, “
The Algebraic Geometry of Motions of Bar-and-Body Frameworks
,”
SIAM J. Algebraic Discrete Methods
0196-5212,
8
(
1
), pp.
1
32
.
30.
Burnside
,
W. S.
, and
Panton
,
A. W.
, 1886,
The Theory of Equations
,
Longmans Green Co.
,
London
.
31.
Erdman
,
A. G.
, and
Sandor
,
G. N.
, 1990,
Mechanism Design: Analysis and Synthesis
,
Prentice-Hall
,
Englewood Cliffs, NJ
, Vol.
1
.
You do not currently have access to this content.