Abstract

The wrench capability analysis of an aerial parallel robot named flying parallel robot (FPR), which involves multiple unmanned aerial vehicles (UAVs) cooperatively supporting a moving platform with rigid links, is investigated in this article. The concept of the available thrust set (ATS) associated with a quadrotor system is introduced, which allows to determine the admissible range of thrust forces generated by a quadrotor actuator given its actuation limits. Under the quasi-static equilibrium condition, the available wrench set (AWS) of the platform is calculated, through the derivation of a wrench matrix that relates the thrust force vectors to the wrench exerted on the platform. A quantitative metric, referred to as capacity margin, is adopted to evaluate the wrench capability of the system with certain robot configurations. The detailed analysis is showcased through several case studies and validated in both ROS simulations and experiments conducted on a real robot.

References

1.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J. P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Robot.
,
27
(
1
), pp.
1
13
.
2.
Bouchard
,
S.
,
Gosselin
,
C.
, and
Moore
,
B.
,
2010
, “
On the Ability of a Cable-Driven Robot to Generate a Prescribed Set of Wrenches
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011010
.
3.
Carpentier
,
J.
,
Budhiraja
,
R.
, and
Mansard
,
N.
,
2017
, “
Learning Feasibility Constraints for Multi-Contact Locomotion of Legged Robots
,” 2
017 Robotics: Science and Systems (RSS)
,
Cambridge, MA
, July, Vol. 13.
4.
Fernbach
,
P.
,
Tonneau
,
S.
, and
Taix
,
M.
,
2018
, “
CROC: Convex Resolution of Centroidal Dynamics Trajectories to Provide a Feasibility Criterion for the Multi Contact Planning Problem
,”
2018 IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
, pp.
8367
8373
.
5.
Orsolino
,
R.
,
Focchi
,
M.
,
Mastalli
,
C.
,
Dai
,
H.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2018
, “
Application of Wrench-Based Feasibility Analysis to the Online Trajectory Optimization of Legged Robots
,”
IEEE Robot. Automat. Lett.
,
3
(
4
), pp.
3363
3370
.
6.
Carpentier
,
J.
, and
Mansard
,
N.
,
2018
, “
Multi-Contact Locomotion of Legged Robots
,”
IEEE Trans. Robot.
,
34
(
6
), pp.
1441
1460
.
7.
Aceituno-Cabezas
,
B.
,
Mastalli
,
C.
,
Dai
,
H.
,
Focchi
,
M.
,
Radulescu
,
A.
,
Caldwell
,
D. G.
,
Cappelletto
,
J.
,
Grieco
,
J. C.
,
Fernández-López
,
G.
, and
Semini
,
C.
,
2018
, “
Simultaneous Contact, Gait, and Motion Planning for Robust Multilegged Locomotion via Mixed-Integer Convex Optimization
,”
IEEE Robot. Automat. Lett.
,
3
(
3
), pp.
2531
2538
.
8.
Orsolino
,
R.
,
Focchi
,
M.
,
Caron
,
S.
,
Raiola
,
G.
,
Barasuol
,
V.
, and
Semini
,
C.
,
2020
, “
Feasible Region: An Actuation-Aware Extension of the Support Region
,”
IEEE Trans. Robot.
,
36
(
4
), pp.
1239
1255
.
9.
Miller
,
A. T.
, and
Allen
,
P. K.
,
2004
, “
Grasp It! A Versatile Simulator for Robotic Grasping
,”
IEEE Robot. Automat. Mag.
,
11
(
4
), pp.
110
122
.
10.
Borst
,
C.
,
Fischer
,
M.
, and
Hirzinger
,
G.
,
2004
, “
Grasp Planning: How to Choose a Suitable Task Wrench Space
,”
2004 IEEE International Conference on Robotics and Automation (ICRA)
,
New Orleans, LA
, Vol. 1, pp.
319
325
.
11.
Krug
,
R.
,
Lilienthal
,
A. J.
,
Kragic
,
D.
, and
Bekiroglu
,
Y.
,
2016
, “
Analytic Grasp Success Prediction With Tactile Feedback
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
IEEE
, pp.
165
171
.
12.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2010
, “Cooperative Manipulation and Transportation With Aerial Robots,”
Robotics: Science and Systems V
,
The MIT Press
, pp.
73
86
.
13.
Erskine
,
J.
,
Chriette
,
A.
, and
Caro
,
S.
,
2019
, “
Wrench Analysis of Cable-Suspended Parallel Robots Actuated by Quadrotors UAVs
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020909
.
14.
Sanalitro
,
D.
,
Savino
,
H. J.
,
Tognon
,
M.
,
Cortés
,
J.
, and
Franchi
,
A.
,
2020
, “
Full-Pose Manipulation Control of a Cable-Suspended Load With Multiple UAVs Under Uncertainties
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2185
2191
.
15.
Nguyen
,
H. N.
,
Park
,
S.
,
Park
,
J.
, and
Lee
,
D.
,
2018
, “
A Novel Robotic Platform for Aerial Manipulation Using Quadrotors as Rotating Thrust Generators
,”
IEEE Trans. Robot.
,
34
(
2
), pp.
353
369
.
16.
Li
,
Z.
,
Bégoc
,
V.
,
Chriette
,
A.
, and
Fantoni
,
I.
,
2022
, “
Wrench Capability Analysis and Control Allocation of a Collaborative Multi-Drone Grasping Robot
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021003
.
17.
Six
,
D.
,
Briot
,
S.
,
Chriette
,
A.
, and
Martinet
,
P.
,
2018
, “
The Kinematics, Dynamics and Control of a Flying Parallel Robot With Three Quadrotors
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
559
566
.
18.
Liu
,
S.
,
Erskine
,
J.
,
Chriette
,
A.
, and
Fantoni
,
I.
,
2021
, “
Decentralized Control and Teleoperation of a Multi-UAV Parallel Robot Based on Intrinsic Measurements
,”
2021 IEEE International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
, pp.
6329
6355
.
19.
Liu
,
S.
,
Fantoni
,
I.
,
Chriette
,
A.
, and
Six
,
D.
,
2022
, “
Wrench Estimation and Impedance-Based Control Applied to a Flying Parallel Robot Interacting With the Environment
,”
IFAC-PapersOnLine
,
55
(
14
), pp.
151
157
.
20.
Liu
,
S.
,
Fantoni
,
I.
, and
Chriette
,
A.
,
2024
, “
Decentralized Control and State Estimation of a Flying Parallel Robot Interacting With the Environment
,”
Control. Eng. Pract.
,
144
, p.
105817
.
21.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031009
.
22.
Gouttefarde
,
M.
, and
Krut
,
S.
,
2010
, “Characterization of Parallel Manipulator Available Wrench Set Facets,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarcic
and
M. M.
Stanisic
, eds.,
Springer
,
Netherlands
, pp.
475
482
.
23.
Herceg
,
M.
,
Kvasnica
,
M.
,
Jones
,
C. N.
, and
Morari
,
M.
,
2013
, “
Multi-Parametric Toolbox 3.0
,”
2013 European Control Conference (ECC)
,
Zurich, Switzerland
, pp.
502
510
.
24.
Guay
,
F.
,
Cardou
,
P.
,
Cruz Ruiz
,
A. L.
, and
Caro
,
S.
,
2014
, “Measuring How Well a Structure Supports Varying External Wrenches,”
New Advances in Mechanisms, Transmissions and Applications Mechanisms and Machine Science
,
V.
Petuya
,
C.
Pinto
, and
E.-C.
Lovasz
, eds., Vol. 17,
Springer
,
Dordrecht
, pp.
385
392
.
25.
PX4
, “PX4-Autopilot Simulation Package Web Page (PX4-Autopilot),” https://docs.px4.io/v1.12/en/simulation/gazebo, Accessed June 2021.
You do not currently have access to this content.