Abstract

Cable-driven joints have gained widespread use in various applications, yet the inherent limitations in cable stiffness and strength pose challenges in ensuring joint stability and operational safety. Enhancing joint stiffness and predicting cable tension changes during motion are essential to mitigate the risk of cable breakage. This article presents the design of a novel bio-inspired rolling joint manipulator, featuring a single-motor-driven pulley transmission system with symmetrical tension amplification. A novel cable winding drive mechanism with integrated tension detection is proposed. The tension distribution across the pulley system is analyzed via the classic Euler equation. A comprehensive system model is established, spanning from the motor-driven winch, through the guide pulleys, to the load-bearing tension amplification pulley. By incorporating the derived tension distribution into the kinematic and dynamic equations of the joint, the model accurately predicts how cable tension evolves during joint movement. The theoretical formulations and tension distribution are validated through both software simulations and prototype experiments, demonstrating high consistency. The results confirm that the dynamic model proposed in this article is more accurate and comprehensive, considering friction and tension transmission.

References

1.
Mattar
,
E.
,
2013
, “
A Survey of Bio-Inspired Robotics Hands Implementation: New Directions in Dexterous Manipulation
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
517
544
.
2.
Maghooa
,
F.
,
Stilli
,
A.
,
Noh
,
Y.
,
Althoefer
,
K.
, and
Wurdemann
,
H. A.
,
2015
, “
Tendon and Pressure Actuation for a Bio-Inspired Manipulator Based on an Antagonistic Principle
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2556
2561
.
3.
Sui
,
D.
,
Zhao
,
S.
,
Wang
,
T.
,
Liu
,
Y.
,
Zhu
,
Y.
, and
Zhao
,
J.
,
2022
, “
Design of a Bio-Inspired Extensible Continuum Manipulator With Variable Stiffness
,”
J. Bionic Eng.
,
22
(
1
), pp.
181
194
.
4.
Dong
,
H.
,
Feng
,
Y.
,
Qiu
,
C.
, and
Chen
,
I.-M.
,
2023
, “
Construction of Interaction Parallel Manipulator: Towards Rehabilitation Massage
,”
IEEE/ASME Trans. Mechatron.
,
28
(
1
), pp.
372
384
.
5.
Ruiz-Ruiz
,
F. J.
,
Gandarias
,
J. M.
,
Pastor
,
F.
, and
Gómez-De-Gabriel
,
J. M.
,
2021
, “
Upper-Limb Kinematic Parameter Estimation and Localization Using a Compliant Robotic Manipulator
,”
IEEE Access
,
9
, pp.
48313
48324
.
6.
Liang
,
Y.
,
Du
,
Z.
,
Wang
,
W.
, and
Sun
,
L.
,
2017
, “
A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots
,”
Sensors
,
17
(
10
), pp.
2257
.
7.
Lo Piccolo
,
M. V.
,
Muscolo
,
G. G.
, and
Ferraresi
,
C.
,
2022
, “Use of Pneumatic Artificial Muscles in a Passive Upper Body Exoskeleton,”
New Trends in Medical and Service Robotics
,
G.
Rauter
,
G.
Carbone
,
P. C.
Cattin
,
A.
Zam
,
D.
Pisla
, and
R.
Riener
, eds.,
Springer International Publishing Ag
,
Cham
, pp.
78
85
.
8.
Chen
,
B.
,
Ni
,
X.
,
Zi
,
B.
,
Xu
,
Q.
, and
Qian
,
J.
,
2024
, “
Design and Implementation of Upper-Body Exoskeleton for Assistance of Individuals With Manual Handling Tasks
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071007
.
9.
Fryman
,
J.
, and
Matthias
,
B.
,
2012
, “
Safety of Industrial Robots: From Conventional to Collaborative Applications
,”
ROBOTIK 2012; 7th German Conference on Robotics
, pp.
1
5
.
10.
Wang
,
Y.
,
Li
,
W.
,
Togo
,
S.
,
Yokoi
,
H.
, and
Jiang
,
Y.
,
2021
, “
Survey on Main Drive Methods Used in Humanoid Robotic Upper Limbs
,”
Cyborg Bionic Syst.
,
2021
, pp.
1
12
.
11.
Inam
,
R.
,
Raizer
,
K.
,
Hata
,
A.
,
Souza
,
R.
,
Forsman
,
E.
,
Cao
,
E.
, and
Wang
,
S.
,
2018
, “
Risk Assessment for Human-Robot Collaboration in an Automated Warehouse Scenario
,”
2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Turin, Italy
,
Sept. 4–7
,
IEEE
, pp.
743
751
.
12.
Li
,
G.
,
Song
,
D.
,
Sun
,
L.
,
Xu
,
S.
,
Wang
,
H.
, and
Liu
,
J.
,
2021
, “
Static Force-Based Modeling and Parameter Estimation for a Deformable Link Composed of Passive Spherical Joints With Preload Forces
,”
IEEE/CAA J. Autom. Sin.
,
8
(
11
), pp.
1817
1826
.
13.
Harper
,
C.
, and
Virk
,
G.
,
2010
, “
Towards the Development of International Safety Standards for Human Robot Interaction
,”
Int. J. Soc. Robot.
,
2
(
3
), pp.
229
234
.
14.
Liang
,
Z.
,
Guan
,
Y.
,
Xiang
,
C.
, and
Song
,
Y.
,
2021
, “
Design and Modeling of a Novel Cable-Driven Elbow Joint Module for Humanoid Arms
,”
2021 IEEE International Conference on Robotics and Biomimetics (ROBIO)
, pp.
1264
1269
.
15.
Kim
,
Y.
, and
Park
,
H.-S.
,
2022
, “
The Switchable Cable-Driven Mechanism to Control Multiple Cables Individually Using a Single Motor
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
4376
4383
.
16.
Suh
,
J.-W.
, and
Kim
,
K.-Y.
,
2018
, “
Harmonious Cable Actuation Mechanism for Soft Robot Joints Using a Pair of Noncircular Pulleys
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061002
.
17.
Vermeulen
,
M.
, and
Wisse
,
M.
,
2010
, “
Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation
,”
Int. J. Soc. Robot
,
2
(
3
), pp.
275
288
.
18.
Lens
,
T.
, and
von Stryk
,
O.
,
2012
, “
Investigation of Safety in Human-Robot-Interaction for a Series Elastic, Tendon-Driven Robot Arm
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
4309
4314
.
19.
Kim
,
Y.-J.
,
2015
, “
Design of Low Inertia Manipulator With High Stiffness and Strength Using Tension Amplifying Mechanisms
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
5850
5856
.
20.
Kim
,
Y.-J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
21.
Pang
,
S.
,
Shang
,
W.
,
Zhang
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2022
, “
Design and Stiffness Analysis of a Novel 7-DOF Cable-Driven Manipulator
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
2811
2818
.
22.
Jiang
,
H.
,
Zhang
,
T.
,
Xiao
,
C.
,
Li
,
J.
, and
Guan
,
Y.
,
2019
, “Modular Design of 7-DOF Cable-Driven Humanoid Arms,”
Intelligent Robotics and Applications
,
H.
Yu
,
J.
Liu
,
L.
Liu
,
Z.
Ju
,
Y.
Liu
, and
D.
Zhou
, eds.,
Springer International Publishing
,
Cham
, pp.
680
691
.
23.
Huang
,
Y.
,
Chen
,
Y.
,
Zhang
,
X.
,
Zhang
,
H.
,
Song
,
C.
, and
Ota
,
J.
,
2021
, “
A Novel Cable-Driven 7-DOF Anthropomorphic Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2174
2185
.
24.
Wu
,
Q.
,
Wang
,
X.
,
Chen
,
L.
, and
Du
,
F.
,
2015
, “
Transmission Model and Compensation Control of Double-Tendon-Sheath Actuation System
,”
IEEE Trans. Ind. Electron.
,
62
(
3
), pp.
1599
1609
.
25.
Zhang
,
D.
,
Sun
,
Y.
, and
Lueth
,
T. C.
,
2021
, “
Design of a Novel Tendon-Driven Manipulator Structure Based on Monolithic Compliant Rolling-Contact Joint for Minimally Invasive Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
16
(
9
), pp.
1615
1625
.
26.
Pang
,
S.
,
Shang
,
W.
,
Dai
,
S.
,
Deng
,
J.
,
Zhang
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2024
, “
Stiffness Optimization of Cable-Driven Humanoid Manipulators
,”
IEEE/ASME Trans. Mechatron.
,
29
(
6
), pp.
4168
4178
.
27.
Samir
,
O.
,
Morshed
,
A. H. M. M.
,
Shafquat
,
S.
, and
Mahbub
,
T.
,
2023
, “
Design and Development of a 3-DoF Robotic Wrist Joint With Tension Amplification Mechanism
,”
Int. J. Interact. Des. Manuf.
,
17
(
6
), pp.
3043
3058
.
28.
Chen
,
Y.
,
Zhang
,
X.
,
Yanjiang
,
H.
,
Wu
,
Y.
, and
Ota
,
J.
,
2022
, “Kinematics Optimization of a Novel Cable-Driven 7-DOF Redundant Manipulator.”
29.
Liu
,
F.
,
Xu
,
W.
,
Huang
,
H.
,
Ning
,
Y.
, and
Li
,
B.
,
2019
, “
Design and Analysis of a High Payload Manipulator Based on a Cable-Driven Serial-Parallel Mechanism
,”
ASME J. Mech. Rob.
,
11
(
5
), p. 051006.
30.
Miyasaka
,
M.
,
Haghighipanah
,
M.
,
Li
,
Y.
,
Matheson
,
J.
,
Lewis
,
A.
, and
Hannaford
,
B.
,
2020
, “
Modeling Cable-Driven Robot With Hysteresis and Cable–Pulley Network Friction
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
1095
1104
.
31.
Zhang
,
D.
,
Feng
,
C.
,
Chen
,
K.
,
Wang
,
D.
, and
Ni
,
X.
,
2017
, “
Effect of Broken Wire on Bending Fatigue Characteristics of Wire Ropes
,”
Int. J. Fatigue
,
103
, pp.
456
465
.
32.
Ivanov
,
H. I.
,
Ermolaeva
,
N. S.
,
Breukels
,
J.
, and
de Jong
,
B. C.
,
2020
, “
Effect of Bending on Steel Wire Rope Sling Breaking Load: Modelling and Experimental Insights
,”
Eng. Fail. Anal.
,
116
, p.
104742
.
33.
Zhang
,
Y.
,
He
,
L.
, and
Wu
,
C.
,
2021
, “
The Effect of Preload Force on Damping in Tendon-Driven Manipulator
,”
Ind. Rob.
,
48
(
3
), pp.
454
462
.
34.
Li
,
Y.
,
Liu
,
Y.
,
Meng
,
D.
,
Wang
,
X.
, and
Liang
,
B.
,
2020
, “
Modeling and Experimental Verification of a Cable-Constrained Synchronous Rotating Mechanism Considering Friction Effect
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5464
5471
.
35.
Khoshnam
,
M.
, and
Patel
,
R. V.
,
2017
, “
Robotics-Assisted Control of Steerable Ablation Catheters Based on the Analysis of Tendon-Sheath Transmission Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1473
1484
.
36.
Anooshahpour
,
F.
,
Yadmellat
,
P.
,
Polushin
,
I. G.
, and
Patel
,
R. V.
,
2019
, “
A Motion Transmission Model for a Class of Tendon-Based Mechanisms With Application to Position Tracking of the Da Vinci Instrument
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
538
548
.
37.
Lu
,
Y.
,
Fan
,
D.
,
Liu
,
H.
, and
Hei
,
M.
,
2015
, “
Transmission Capability of Precise Cable Drive Including Bending Rigidity
,”
Mech. Mach. Theory
,
94
, pp.
132
140
.
38.
Chen
,
Z.
,
Yu
,
Y.
,
Wang
,
X.
,
Wu
,
X.
, and
Liu
,
H.
,
2015
, “
Experimental Research on Bending Performance of Structural Cable
,”
Constr. Build. Mater.
,
96
, pp.
279
288
.
39.
Cho
,
Y.
,
Kang
,
B.
,
Park
,
C.
, and
Cheong
,
J.
,
2022
, “
Kinematics of Elastic Tendons for Tendon-Driven Manipulators With Transmission Friction
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
202
213
.
40.
Ju
,
F.
, and
Choo
,
Y. S.
,
2005
, “
Super Element Approach to Cable Passing Through Multiple Pulleys
,”
Int. J. Solids Struct.
,
42
(
11–12
), pp.
3533
3547
.
41.
Zeng
,
S.
,
Zhang
,
Y.
,
Wang
,
S.
,
Guglieri
,
G.
,
Primatesta
,
S.
, and
Wu
,
W.
,
2024
, “
Modeling and Experimental Verification of a Cable Driven Rolling Joint System Considering Preload and Friction Effect
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
13
.
42.
Zeng
,
S.
,
Zhang
,
Y.
, and
Wang
,
S.
,
2024
, “
Simulation Analysis of Cable-Driven Rolling Joint for Humanoid Robot Via Adams
,”
IET Conference Proceedings
,
Xi'an, China
,
Aug. 16–19
.
43.
Wei
,
W.
,
Qu
,
Z.
,
Wang
,
W.
,
Zhang
,
P.
, and
Hao
,
F.
,
2018
, “
Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton
,”
Appl. Bionics Biomech.
,
2018
(
1
), p.
1925694
.
44.
Zeng
,
S.
,
Wang
,
S.
,
Guglieri
,
G.
,
Primatesta
,
S.
,
Zhang
,
Y.
,
Wang
,
K.
, and
Zhang
,
Y.
,
2024
, “
Design and Analysis of a Rolling Joint Based on Tension Amplification
,”
2024 IEEE 19th Conference on Industrial Electronics and Applications (ICIEA)
,
Aug. 5–8
, pp.
1
6
.
45.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and ‘Soft-Arm’ Tactics [Robot Arm Design]
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
.
46.
Euler
,
L.
,
1769
, “
Remarques Sur L’effet Du Frottement Dans L’équilibre
,”
Mémoires de L’académie des sciences de Berlin
, Series 2, Volume 8, pp.
265
278
.
47.
Ivaldi
,
S.
,
Padois
,
V.
, and
Nori
,
F.
,
2014
, “
Tools for Dynamics Simulation of Robots: A Survey Based on User Feedback
.
48.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.
You do not currently have access to this content.