Abstract
This paper presents an approach to passively realize any specified object spatial compliance using the grasp of a robotic hand. The kinematically anthropomorphic hands considered have multiple 4-joint fingers making hard point contact with the held object, and the joints of each finger have selectable passive elastic behavior. It is shown that the space of passively realizable compliances is restricted by the kinematic structure of the anthropomorphic hand. To achieve an arbitrary compliant behavior, fingers must be able to adjust their orientation. Synthesis procedures for grasps having 3, 4, and 5 or more fingers are developed. These procedures identify the finger configurations and the individual finger joint compliances needed to passively achieve any specified spatial object compliance matrix in the 20-dimensional subspace of grasp-realizable behaviors.