Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article reports the design, modeling, and experiments of a novel retinal surgery robot based on spatial variable remote center-of-motion (RCM) mechanism. The general design criteria for parallel mechanisms are proposed, and the planar five-bar mechanisms are evaluated and selected. The planar-spatial evolution process, including the parallel connection of the planar mechanism and the equivalent substitution of joints, is adopted to develop a spatial variable RCM mechanism and then the robot. The mobility and singularity of the robot are analyzed, and the forward/inverse kinematics and workspace are modeled. Dimension optimization is conducted based on a comprehensive performance indicator that characterizes the motion range of linear actuators and the global dexterity performance index of robot. The prototyped robot is fabricated and assembled, and the kinematic calibration is performed. The position error of end-effector is within 34 μm, and both the position error and deviation of the RCM point are within 23 μm. The robot is demonstrated to reach the desired position and execute the RCM motion with high precision simultaneously.

References

1.
Steinmetz
,
J. D.
,
Bourne
,
R. P. A.
,
Briant
,
P. S.
,
Flaxman
,
S. R.
,
Taylor
,
H. R. B.
,
Jonas
,
J. B.
,
Abdoli
,
A. A.
, et al
,
2021
, “
Causes of Blindness and Vision Impairment in 2020 and Trends Over 30 Years, and Prevalence of Avoidable Blindness in Relation to VISION 2020: The Right to Sight: An Analysis for the Global Burden of Disease Study
,”
Lancet Glob. Health
,
9
(
2
), pp.
e144
e160
.
2.
Yang
,
X.
,
Chen
,
H.
,
Zhang
,
T.
,
Yin
,
X.
,
Man
,
J.
,
He
,
Q.
, and
Lu
,
M.
,
2021
, “
Global, Regional, and National Burden of Blindness and Vision Loss Due to Common Eye Diseases Along With Its Attributable Risk Factors From 1990 to 2019: A Systematic Analysis From the Global Burden of Disease Study 2019
,”
Aging (Albany. NY)
,
13
(
15
), pp.
19614
19642
.
3.
Ebrahimi
,
A.
,
Urias
,
M. G.
,
Patel
,
N.
,
Taylor
,
R. H.
,
Gehlbach
,
P.
, and
Iordachita
,
I.
,
2021
, “
Adaptive Control Improves Sclera Force Safety in Robot-Assisted Eye Surgery: A Clinical Study
,”
IEEE Trans. Biomed. Eng.
,
68
(
11
), pp.
3356
3365
.
4.
Iordachita
,
I. I.
,
De Smet
,
M. D.
,
Naus
,
G.
,
Mitsuishi
,
M.
, and
Riviere
,
C. N.
,
2022
, “
Robotic Assistance for Intraocular Microsurgery: Challenges and Perspectives
,”
Proc. IEEE
,
110
(
7
), pp.
893
908
.
5.
Gerber
,
M. J.
,
Pettenkofer
,
M.
, and
Hubschman
,
J. P.
,
2020
, “
Advanced Robotic Surgical Systems in Ophthalmology
,”
Eye
,
34
(
9
), pp.
1554
1562
.
6.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
8
(
2
), pp.
127
145
.
7.
Gijbels
,
A.
,
Wouters
,
N.
,
Stalmans
,
P.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
Poorten
,
E. V.
,
2013
, “
Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery
,”
IEEE International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3598
3603
.
8.
Vander Poorten
,
E.
,
Riviere
,
C. N.
,
Abbott
,
J. J.
,
Bergeles
,
C.
,
Nasseri
,
M. A.
,
Kang
,
J. U.
,
Sznitman
,
R.
,
Faridpooya
,
K.
, and
Iordachita
,
I.
,
2019
,
Robotic Retinal Surgery
,
Elsevier Inc.
,
Amsterdam
.
9.
Huo
,
Z.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
W.
,
Shi
,
B.
, and
Zhang
,
D.
,
2022
, “
A Dual-Driven High Precision Rotary Platform Based on Stick-Slip Principle
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3053
3064
.
10.
Shim
,
S.
,
Ji
,
D.
,
Lee
,
S.
,
Choi
,
H.
, and
Hong
,
J.
,
2020
, “
Compact Bone Surgery Robot With a High-Resolution and High-Rigidity Remote Center of Motion Mechanism
,”
IEEE Trans. Biomed. Eng.
,
67
(
9
), pp.
2497
2506
.
11.
Essomba
,
T.
,
Hsu
,
Y.
,
Sandoval Arevalo
,
J. S.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2019
, “
Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic-Assisted Craniotomy
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060905
.
12.
Essomba
,
T.
, and
Nguyen Vu
,
L.
,
2018
, “
Kinematic Analysis of a New Five-Bar Spherical Decoupled Mechanism With Two-Degrees of Freedom Remote Center of Motion
,”
Mech. Mach. Theory
,
119
, pp.
184
197
.
13.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
14.
Smits
,
J.
,
Reynaerts
,
D.
, and
Poorten
,
E. V.
,
2020
, “
Synthesis and Methodology for Optimal Design of a Parallel Remote Center of Motion Mechanism: Application to Robotic Eye Surgery
,”
Mech. Mach. Theory
,
151
, p.
103896
.
15.
Wu
,
J.
,
Li
,
G.
,
Urias
,
M.
,
Patel
,
N. A.
,
Liu
,
Y. H.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2020
, “
An Optimized Tilt Mechanism for a New Steady-Hand Eye Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 25–29
, pp.
3105
3111
.
16.
He
,
X.
,
Balicki
,
M.
,
Gehlbach
,
P.
,
Handa
,
J.
,
Taylor
,
R.
, and
Iordachita
,
I.
,
2014
, “
A Multi-Function Force Sensing Instrument for Variable Admittance Robot Control in Retinal Microsurgery
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Hong Kong
,
May 31–June 7
, pp.
1411
1418
.
17.
Ebrahimi
,
A.
,
Roizenblatt
,
M.
,
Patel
,
N.
,
Gehlbach
,
P.
, and
Iordachita
,
I.
,
2020
, “
Auditory Feedback Effectiveness for Enabling Safe Sclera Force in Robot-Assisted Vitreoretinal Surgery: A Multi-User Study
,”
IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 25–29
, pp.
3274
3280
.
18.
Brogan
,
K.
,
Dawar
,
B.
,
Lockington
,
D.
, and
Ramaesh
,
K.
,
2018
, “
Intraoperative Head Drift and Eye Movement: Two Under Addressed Challenges During Cataract Surgery
,”
Eye
,
32
(
6
), pp.
1111
1116
.
19.
Bai
,
M.
,
Zhang
,
M.
,
Zhang
,
H.
,
Pang
,
L.
,
Zhao
,
J.
, and
Gao
,
C.
,
2021
, “
An Error Compensation Method for Surgical Robot Based on RCM Mechanism
,”
IEEE Access
,
9
, pp.
140747
140758
.
20.
Wilson
,
J. T.
,
Gerber
,
M. J.
,
Prince
,
S. W.
,
Chen
,
C. W.
,
Schwartz
,
S. D.
,
Hubschman
,
J. P.
, and
Tsao
,
T. C.
,
2018
, “
Intraocular Robotic Interventional Surgical System (IRISS): Mechanical Design, Evaluation, and Master–Slave Manipulation
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
14
(
1
), p.
e1842
.
21.
Alamdar
,
A.
,
Usevitch
,
D. E.
,
Wu
,
J.
,
Taylor
,
R. H.
,
Gehlbach
,
P.
, and
Iordachita
,
I.
,
2024
, “
Steady-Hand Eye Robot 3.0: Optimization and Benchtop Evaluation for Subretinal Injection
,”
IEEE Trans. Med. Robot. Bionics
,
6
(
1
), pp.
135
145
.
22.
Niu
,
G.
,
Pan
,
B.
,
Fu
,
Y.
, and
Qu
,
C.
,
2020
, “
Development of a New Medical Robot System for Minimally Invasive Surgery
,”
IEEE Access
,
8
(
2
), pp.
144136
144155
.
23.
Jian
,
Y.
,
Jin
,
Y.
,
Price
,
M.
, and
Moore
,
J.
,
2020
, “
A New 7-Degree-of-Freedom 2-PRRRRR Parallel Remote Center-of-Motion Robot for Eye Surgery
,”
IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
,
New York
,
Nov. 29–Dec. 1
, pp.
891
896
.
24.
Yang
,
U. J.
,
Kim
,
D.
,
Hwang
,
M.
,
Kong
,
D.
,
Kim
,
J. H.
,
Nho
,
Y. H.
,
Lee
,
W. K.
, and
Kwon
,
D. S.
,
2021
, “
A Novel Microsurgery Robot Mechanism With Mechanical Motion Scalability for Intraocular and Reconstructive Surgery
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
17
(
3
), p.
e2240
.
25.
Sun
,
Z.
,
Wang
,
T.
,
Lu
,
C.
,
Shen
,
Y.
, and
Wang
,
J.
,
2022
, “
Robotic System With Programmable Motion Constraint for Transurethral Resection
,”
Int. J. Comput. Assist. Radiol. Surg.
,
17
(
5
), pp.
895
902
.
26.
Yang
,
Y.
,
Jiang
,
Z.
,
Yang
,
Y.
,
Qi
,
X.
,
Hu
,
Y.
,
Du
,
J.
,
Han
,
B.
, and
Liu
,
G.
,
2020
, “
Safety Control Method of Robot-Assisted Cataract Surgery With Virtual Fixture and Virtual Force Feedback
,”
J. Intell. Robot. Syst.
,
97
(
1
), pp.
17
32
.
27.
Wang
,
F.
,
Zhao
,
X.
,
Huo
,
Z.
,
Shi
,
B.
,
Liang
,
C.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2021
, “
A 2-DOF Nano-Positioning Scanner With Novel Compound Decoupling-Guiding Mechanism
,”
Mech. Mach. Theory
,
155
, p.
104066
.
28.
Wang
,
F.
,
Huo
,
Z.
,
Liang
,
C.
,
Shi
,
B.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2019
, “
A Novel Actuator-Internal Micro/Nano Positioning Stage With an Arch-Shape Bridge-Type Amplifier
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9161
9172
.
29.
Nakano
,
T.
,
Sugita
,
N.
,
Ueta
,
T.
,
Tamaki
,
Y.
, and
Mitsuishi
,
M.
,
2009
, “
A Parallel Robot to Assist Vitreoretinal Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
4
(
6
), pp.
517
526
.
30.
Wei
,
W.
,
Goldman
,
R. E.
,
Fine
,
H. F.
,
Chang
,
S.
, and
Simaan
,
N.
,
2009
, “
Performance Evaluation for Multi-Arm Manipulation of Hollow Suspended Organs
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
147
157
.
31.
Yang
,
Y.
,
Liu
,
H.
,
Zheng
,
H.
,
Peng
,
Y.
, and
Yu
,
Y.
,
2021
, “
Two Types of Remote-Center-of-Motion Deployable Manipulators With Dual Scissor-Like Mechanisms
,”
Mech. Mach. Theory
,
160
, p.
104274
.
32.
Aksungur
,
S.
,
Aydin
,
M.
, and
Yakut
,
O.
,
2020
, “
Real-Time PID Control of a Novel RCM Mechanism Designed and Manufactured for Use in Laparoscopic Surgery
,”
Ind. Rob.
,
47
(
2
), pp.
153
166
.
33.
Nasseri
,
M. A.
,
Eder
,
M.
,
Eberts
,
D.
,
Nair
,
S.
,
Maier
,
M.
,
Zapp
,
D.
,
Lohmann
,
C. P.
, and
Knoll
,
A.
,
2013
, “
Kinematics and Dynamics Analysis of a Hybrid Parallel-Serial Micromanipulator Designed for Biomedical Applications
,”
2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing
,
Wollongong, Australia
,
July 9–12
, pp.
293
299
.
34.
Zhou
,
M.
,
Yu
,
Q.
,
Huang
,
K.
,
Mahov
,
S.
,
Eslami
,
A.
,
Maier
,
M.
,
Lohmann
,
C. P.
, et al
,
2020
, “
Towards Robotic-Assisted Subretinal Injection: A Hybrid Parallel-Serial Robot System Design and Preliminary Evaluation
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6617
6628
.
35.
Lin
,
C.
,
Guang
,
C.
,
Zheng
,
Y.
,
Ma
,
K.
, and
Yang
,
Y.
,
2022
, “
Preliminary Evaluation of a Novel Vision-Guided Hybrid Robot System for Capsulotomy in Cataract Surgery
,”
Displays
,
74
(
June
), p.
102262
.
36.
Figdraw
,
2023
, “Cross-Sectional Structure of the Eyeball,” https://Www.Figdraw.Com/#/Paint_img_info?ClsId=undefined&pid=29958&nav, Accessed November 13, 2023.
37.
Bu
,
W.
,
Liu
,
Z.
,
Tan
,
J.
, and
Cheng
,
J.
,
2011
, “
A Redundantly Actuated PRPRP Radial Mechanism in the Segment Erector of a Shield Machine for Synchronization Control
,”
Front. Mech. Eng.
,
6
(
4
), pp.
463
467
.
38.
Kamandar
,
M. R.
,
Massah
,
J.
, and
Jamzad
,
M.
,
2022
, “
Design and Evaluation of Hedge Trimmer Robot
,”
Comput. Electron. Agric.
,
199
(
July 2021
), p.
107065
.
39.
Cervantes-Sánchez
,
J. J.
,
Hernández-Rodríguez
,
J. C.
, and
Rendón-Sánchez
,
J. G.
,
2000
, “
On the Workspace, Assembly Configurations and Singularity Curves of the RRRRR-Type Planar Manipulator
,”
Mech. Mach. Theory
,
35
(
8
), pp.
1117
1139
.
40.
Kim
,
Y.
,
Lee
,
Y.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T. W.
,
2020
, “
STEP: A New Mobile Platform With 2-DOF Transformable Wheels for Service Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1859
1868
.
41.
Zhang
,
N.
,
Huang
,
P.
, and
Li
,
Q.
,
2017
, “
Modeling, Design and Experiment of a Remote-Center-of-Motion Parallel Manipulator for Needle Insertion
,”
Robot. Comput. Integr. Manuf.
,
50
, pp.
193
202
.
42.
Yang
,
X.
,
Liu
,
H.
,
Xiao
,
J.
,
Zhu
,
W.
,
Liu
,
Q.
,
Gong
,
G.
, and
Huang
,
T.
,
2018
, “
Continuous Friction Feedforward Sliding Mode Controller for a TriMule Hybrid Robot
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1673
1683
.
43.
Ding
,
J.
, and
Wang
,
C.
,
2021
, “
Accuracy Analysis and Error Compensation for Tricept Machine Tool Under Load
,”
J. Mech. Sci. Technol.
,
35
(
8
), pp.
3591
3600
.
44.
Yang
,
S.
,
MacLachlan
,
R. A.
, and
Riviere
,
C. N.
,
2015
, “
Manipulator Design and Operation of a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument
,”
IEEE/ASME Trans. Mechatron.
,
20
(
2
), pp.
761
772
.
45.
Huang
,
T.
,
Dong
,
C.
,
Liu
,
H.
,
Sun
,
T.
, and
Chetwynd
,
D. G.
,
2019
, “
A Simple and Visually Orientated Approach for Type Synthesis of Overconstrained 1T2R Parallel Mechanisms
,”
Robotica
,
37
(
7
), pp.
1161
1173
.
46.
Zhang
,
J.
,
Zhao
,
Y. Q.
, and
Jin
,
Y.
,
2016
, “
Elastodynamic Modeling and Analysis for an Exechon Parallel Kinematic Machine
,”
ASME J. Manuf. Sci. Eng.
,
138
(
3
), p.
031011
.
47.
Chen
,
X.
,
Liu
,
X. J.
,
Xie
,
F. G.
, and
Sun
,
T.
,
2014
, “
A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads
,”
Int. J. Adv. Robot. Syst.
,
11
(
1
), pp.
1
10
.
48.
Wang
,
F.
,
Shi
,
B.
,
Huo
,
Z.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2022
, “
Design and Control of a Spatial Micromanipulator Inspired by Deployable Structure
,”
IEEE Trans. Ind. Electron.
,
69
(
1
), pp.
971
979
.
49.
Wang
,
X.
,
Sun
,
S.
,
Zhang
,
P.
,
Wu
,
M.
,
Zhao
,
C.
,
Zhang
,
D.
, and
Meng
,
X.
,
2022
, “
Model-Based Kinematic and Non-Kinematic Calibration of a 7R 6-DOF Robot With Non-Spherical Wrist
,”
Mech. Mach. Theory
,
178
, p.
105086
.
50.
Qin
,
Y.
,
Shi
,
Y.
,
Wang
,
L.
,
Wang
,
H.
, and
Han
,
J.
,
2024
, “
Design, Modeling and Optimization of a Magnetic Resonance Conditional 3-RRR Spherical Parallel Robot for Neurosurgery
,”
IEEE Trans. Med. Robot. Bionics
,
6
(
2
), pp.
556
566
.
51.
Yang
,
S.
,
Balicki
,
M.
,
MacLachlan
,
R. A.
,
Liu
,
X.
,
Kang
,
J. U.
,
Taylor
,
R. H.
, and
Riviere
,
C. N.
,
2012
, “
Optical Coherence Tomography Scanning With a Handheld Vitreoretinal Micromanipulator
,”
Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
San Diego, CA
,
Aug. 28–Sept. 1
, pp.
948
951
.
52.
Yang
,
S.
,
Martel
,
J. N.
,
Lobes
,
L. A.
, and
Riviere
,
C. N.
,
2018
, “
Techniques for Robot-Aided Intraocular Surgery Using Monocular Vision
,”
Int. J. Rob. Res.
,
37
(
8
), pp.
931
952
.
53.
Xu
,
C.
,
Wang
,
Y.
,
Zhou
,
C.
,
Zhang
,
Z.
,
Xie
,
L.
,
Andersson
,
K.
, and
Feng
,
L.
,
2021
, “
Application Research of Master-Slave Cranio-Maxillofacial Surgical Robot Based on Force Feedback
,”
Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
,
235
(
5
), pp.
583
596
.
54.
Gonenc
,
B.
,
Chae
,
J.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2017
, “
Towards Robot-Assisted Retinal Vein Cannulation: A Motorized Force-Sensing Microneedle Integrated With a Handheld Micromanipulator
,”
Sensors
,
17
(
10
), p.
2195
.
55.
Ladha
,
R.
,
Meenink
,
T.
,
Smit
,
J.
, and
de Smet
,
M. D.
,
2023
, “
Advantages of Robotic Assistance Over a Manual Approach in Simulated Subretinal Injections and its Relevance for Gene Therapy
,”
Gene Ther.
,
30
(
3–4
), pp.
264
270
.
You do not currently have access to this content.