Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article presents the feasibility study and preliminary testing of an underactuated cable-driven parallel robot for automated launch and recovery operations on the sea surface. The robot frame is mounted onto a primary vessel (PV) subject to sea-induced motions. During launch, the end-effector (EE) is required to deploy a secondary vessel (SV) by lowering it from the PV onto the sea surface. During recovery, the EE has to track and grasp a SV, and the EE-SV assembly needs to be stabilized during lifting from the sea surface to the PV. Sea conditions and the underactuated nature of the EE influence the operational feasibility and the overall robot performance. This article presents the conceptual design and the robot model, as well as the methodologies for winch dimensioning and robot control. An extensive simulation campaign is conducted to optimize performances and assess the system behavior. Finally, the operations are tested on a scaled prototype in a laboratory environment.

References

1.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S.
,
2017
, “
Performance Evaluation of a New Design of Cable-Suspended Camera System
,”
IEEE International Conference on Robotics and Automation
,
Marina Bay Sands, Singapore
,
May 29–June 3
, pp.
3728
3733
.
2.
Bruckmann
,
T.
,
Lalo
,
W.
,
Nguyen
,
K.
, and
Salah
,
B.
,
2012
, “
Development of a Storage Retrieval Machine for High Racks Using a Wire Robot
,”
ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
771
780
.
3.
Bruckmann
,
T.
, and
Boumann
,
R.
,
2021
, “
Simulation and Optimization of Automated Masonry Construction Using Cable Robots
,”
Adv. Eng. Inform.
,
50
(
101388
), pp.
1
14
.
4.
Izard
,
J.-B.
,
Gouttefarde
,
M.
,
Baradat
,
C.
,
Culla
,
D.
, and
Sallé
,
D.
,
2013
, “Integration of a Parallel Cable-Driven Robot on an Existing Building Façade,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
149
164
.
5.
Idà
,
E.
,
Marian
,
D.
, and
Carricato
,
M.
,
2020
, “
A Deployable Cable-Driven Parallel Robot With Large Rotational Capabilities for Laser-Scanning Applications
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4140
4147
.
6.
Hu
,
Y.
,
Tao
,
L.
, and
Lv
,
W.
,
2014
, “
Anti-Pendulation Analysis of Parallel Wave Compensation Systems
,”
Inst. Mech. Eng., Part M: J. Eng. Maritime Environ.
,
230
(
1
), pp.
177
186
.
7.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n -dof Parallel Robots Driven by n+2 Cables
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1444
1457
.
8.
Kery
,
S.
,
Hughes
,
G.
,
May
,
E.
,
Kjolseth
,
P.
,
Pang
,
M.
,
Thomas
,
W.
,
Treakle
,
T.
, and
Liut
,
D.
,
2005
, “
Achieving High Container Through-Put Rates, Between Vessels in High Seas (a Vision of Hicass)
,”
MTS/IEEE OCEANS Conference
,
Washington, DC
,
Sept. 17–23
, pp.
454
459
.
9.
Lv
,
W.
,
Tao
,
L.
, and
Hu
,
Y.
,
2017
, “
On the Real-Time Calculation of the Forward Kinematics of a Suspended Cable-Driven Parallel Mechanism With 6-Degree-of-Freedom Wave Compensation
,”
Adv. Mech. Eng.
,
9
(
6
), pp.
1
17
.
10.
Lv
,
W.
,
Tao
,
L.
, and
Ji
,
Z.
,
2017
, “
Design and Control of Cable-Drive Parallel Robot With 6-DOF Active Wave Compensation
,”
IEEE International Conference on Robotics and Automation
,
Marina Bay Sands, Singapore
,
May 29–June 3
, pp.
129
133
.
11.
Tong
,
Y.
, and
He
,
J.
,
2018
, “
Dynamics and Force Regulation of Fully Constrained Cable-Driven Parallel Mechanism as a Marine Salvage Device
,”
IEEE International Conference of Intelligent Robotic and Control Engineering
,
Lanzhou, China
,
Aug. 24–27
, pp.
60
63
.
12.
Horoub
,
M. M.
,
Hassan
,
M.
, and
Hawwa
,
M. A.
,
2018
, “
Workspace Analysis of a Gough-Stewart Type Cable Marine Platform Subjected to Harmonic Water Waves
,”
Mech. Mach. Theory.
,
120
, pp.
314
325
.
13.
Horoub
,
M.
,
Hassan
,
M.
, and
Hawwa
,
M.
,
2019
, “
A Floating Cable-Driven Robotic Manipulator in a Marine Environment
,”
Advances in Mechanism and Machine Science, T. Uhl, ed. Springer, Cham
, pp.
2893
2906
.
15.
Idà
,
E.
, and
Carricato
,
M.
,
2021
, “A New Performance Index for Underactuated Cable-Driven Parallel Robots,”
Cable-Driven Parallel Robots
,
M.
Gouttefarde
,
T.
Bruckmann
, and
A.
Pott
, eds.
Springer
,
Cham
, pp.
24
36
.
16.
Idà
,
E.
,
Briot
,
S.
, and
Carricato
,
M.
,
2021
, “Robust Trajectory Planning of Under-Actuated Cable-Driven Parallel Robot With 3 Cables,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Siciliano
, eds.
Springer
,
Cham
, pp.
65
72
.
17.
Idà
,
E.
,
Briot
,
S.
, and
Carricato
,
M.
,
2021
, “
Natural Oscillations of Underactuated Cable-Driven Parallel Robots
,”
IEEE Access
,
9
, pp.
71660
71672
.
18.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2018
, “Dynamically-Feasible Elliptical Trajectories for Fully Constrained 3-DOF Cable-Suspended Parallel Robots,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds.,
Springer
,
Cham
, pp.
219
230
.
19.
Idà
,
E.
, and
Mattioni
,
V.
,
2022
, “
Cable-Driven Parallel Robot Actuators: State of the Art and Novel Servo-winch Concept
,”
Actuators
,
11
(
10
), pp.
1
13
.
20.
Angelini
,
M.
,
Ida’
,
E. I.
,
Bertin
,
D.
,
Carricato
,
M.
,
Mantovani
,
E.
,
Bazzi
,
D.
, and
Orassi
,
V.
,
2023
, “
An Underactuated Cable-Driven Parallel Robot for Marine Automated Launch and Recovery Operations
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8: 47th Mechanisms and Robotics Conference (MR)
,
Boston, MA
,
Aug. 20–23
, ASME, p. V008T08A056.
21.
Lucarini
,
A.
, and
Idá
,
E.
,
2022
, “Kinematic Modeling and Design of a Sensorized Cable-Routing System for Cable-Driven Parallel Robots,”
Advances in Italian Mechanism Science
,
V.
Niola
,
A.
Gasparetto
,
G.
Quaglia
, and
G.
Carbone
, eds.,
Springer
,
Cham
, pp.
77
85
.
22.
United States Department of Defense
,
1986
. “
Interface Standard for Shipboard System Section 301a Ship Motion and Attitude (Metric)
,” https://publishers.standardstech.com/content/military-dod-usdod_dod-std-1399-301, Accessed February 22, 2023.
23.
Gabaldo
,
S.
,
Idà
,
E.
, and
Carricato
,
M.
,
2022
, “Sensitivity of the Direct Kinematics of Underactuated Cable-Driven Parallel Robots to Redundant Sensor-Measurement Errors,”
Advances in Robot Kinematics 2022
,
O.
Altuzarra
and
A.
Kecskeméthy
, eds.,
Springer
,
Cham
, pp.
131
138
.
24.
Santos
,
J. C.
,
Gouttefarde
,
M.
, and
Chemori
,
A.
,
2022
, “
A Nonlinear Model Predictive Control for the Position Tracking of Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2597
2616
.
25.
Det Norske Veritas
,
2021
, “
Launching Appliances for Work Boats and Tender boats
,” https://global.ihs.com/doc_detail.cfm?document_name=DNV-ST-0498, Accessed 27 February 2023.
26.
Idà
,
E.
,
Briot
,
S.
, and
Carricato
,
M.
,
2022
, “
Identification of the Inertial Parameters of Underactuated Cable-Driven Parallel Robots
,”
Mech. Mach. Theory.
,
167
(
104504
), pp.
1
14
.
27.
Bettega
,
J.
,
Piva
,
G.
,
Richiedei
,
D.
, and
Trevisani
,
A.
,
2023
, “
Model Predictive Control for Path Tracking in Cable Driven Parallel Robots With Flexible Cables: Collocated vs. Noncollocated Control
,”
Multibody Syst. Dyn.
,
58
, pp.
47
81
.
28.
Flores
,
P.
,
Machado
,
M.
,
Seabra
,
E.
, and
Tavares da Silva
,
M.
,
2010
, “
‘A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems’
,”
J. Comput. Nonlinear. Dyn.
,
6
(
1
), p.
011019
.
29.
Harandi
,
M. R. J.
, and
Taghirad
,
H. D.
,
2021
, “
Adaptive Interconnection and Damping Assignment Passivity-Based Control for An Underactuated Cable-Driven Robot
,”
Int. J. Adapt. Control Signal Process.
,
35
(
12
), pp.
2487
2498
.
30.
Harandi
,
M. R. J.
,
Khalilpour
,
S. A.
, and
Taghirad
,
H. D.
,
2023
, “
Adaptive Energy Shaping Control of a 3-DOF Underactuated Cable-Driven Parallel Robot
,”
IEEE Trans. Ind. Inform.
,
19
(
6
), pp.
7552
7560
.
31.
Gabaldo
,
S.
,
Idà
,
E.
, and
Carricato
,
M.
,
2023
, “Pose-Estimation Methods for Planar Underactuated Cable-Driven Parallel Robots,”
Cable-Driven Parallel Robots
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer
, vol. 132, pp.
3
15
.
32.
Harandi
,
M. R. J.
,
Damirchi
,
H.
,
Khalilpour
,
S. A.
, and
Taghirad
,
H. D.
,
2019
, “
Point-to-Point Motion Control of an Underactuated Planar Cable Driven Robot
,”
27th Iranian Conference on Electrical Engineering
,
Yazd, Iran
,
Apr. 30–May 2
, pp.
979
984
.
33.
Kelly
,
R.
,
1997
, “
PD Control With Desired Gravity Compensation of Robotic Manipulators: A Review
,”
Int. J. Rob. Res.
,
16
(
5
), pp.
660
672
.
34.
Oh
,
S.-R.
, and
Agrawal
,
S.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Robotics
,
21
(
3
), pp.
457
465
.
35.
IRMAL@B, 2023, “Irmal@b Research Cable-Driven Parallel Robots,” https://irmalab.org/research/cable-driven-robots/, Accessed July 15, 2023.
36.
Laboratoire de robotique
,
2023
, “
Laval University Robotics Laboratory Website
. https://robot.gmc.ulaval.ca/en/home/, Accessed July 15, 2023.
37.
Idà
,
E.
,
2023
, “
Recovery Demonstration Video
,” https://youtu.be/uhcU0XngIXU, Accessed April 17, 2024.
You do not currently have access to this content.