Abstract

Exoskeletons have the ability to aid humans in physically demanding and injury-prone activities, such as lifting loads while squatting. However, despite their immense potential, the control of powered exoskeletons remains a persistent challenge. In this study, we first predict the human lifting motion and knee joint torque using an inverse dynamics optimization formulation with a two-dimensional (2D) human skeletal model. The design variables are human joint angle profiles. The normalized human joint torque squared is minimized subject to physical and lifting task constraints. After that, the biomechanical assistive knee exoskeleton torque is obtained by scaling the predicted human knee joint torque. Second, we also present a 2D human skeletal model with a powered knee exoskeleton for predicting the optimal assistive torque and lifting motion. The design variables are human joint angle profiles and exoskeleton motor current profiles. Then, the biomechanical and optimal exoskeleton torques are implemented in a powered knee exoskeleton in real-time to provide external assistance in human lifting motion. Finally, the biomechanical and optimal assistive exoskeleton torque controls for lifting are compared. It is observed that both control methods have a significant impact on reducing muscle activations for the specific muscle groups compared to the cases without the exoskeleton. Especially, peak activations of erector spinae and rectus femoris muscles are reduced by 57.79% and 47.26% with biomechanical assistive torque. Likewise, vastus medialis and vastus lateralis activations drop by 46.82% and 52.24% with optimal assistive torque.

References

1.
Young
,
A. J.
, and
Ferris
,
D. P.
,
2017
, “
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
2
), pp.
171
182
.
2.
Tang
,
X.
,
Wang
,
X.
,
Ji
,
X.
,
Zhou
,
Y.
,
Yang
,
J.
,
Wei
,
Y.
, and
Zhang
,
W.
,
2022
, “
A Wearable Lower Limb Exoskeleton: Reducing the Energy Cost of Human Movement
,”
Micromachines
,
13
(
6
), p.
900
.
3.
Terrazas-Rodas
,
D.
,
Rocca-Huaman
,
L.
,
Ramírez-Amaya
,
C.
, and
Alvarez-Rodriguez
,
A. E.
,
2022
, “
Lower-Limb Exoskeleton Systems for Rehabilitation and/or Assistance: A Review
,”
2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)
,
Toronto, ON, Canada
,
June 1–4
,
IEEE
, pp.
1
7
.
4.
Font-Llagunes
,
J. M.
,
Lugrís
,
U.
,
Clos
,
D.
,
Alonso
,
F. J.
, and
Cuadrado
,
J.
,
2020
, “
Design, Control, and Pilot Study of a Lightweight and Modular Robotic Exoskeleton for Walking Assistance After Spinal Cord Injury
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031008
.
5.
Houtenville
,
A. J.
,
Brucker
,
D. L.
, and
Lauer
,
E. A.
,
2016
, Annual Compendium of Disability Statistics, 2015.
6.
Wretenberg
,
P.
, and
Arborelius
,
U. P.
,
1994
, “
Power and Work Produced in Different Leg Muscle Groups When Rising From a Chair
,”
Eur. J. Appl. Physiol. Occupat. Physiol.
,
68
(
5
), pp.
413
417
.
7.
Bai
,
S.
, and
Rasmussen
,
J.
,
2011
, ”
Modelling of Physical Human-Robot Interaction for Exoskeleton Designs
,”
Proceedings of Multibody Dynamics 2011, ECCOMAS Thematic Conference
,
Brussels, Belgium
,
July 4–7
.
8.
Agarwal
,
P.
,
Kuo
,
P.-H.
,
Neptune
,
R. R.
, and
Deshpande
,
A. D.
,
2013
, “
A Novel Framework for Virtual Prototyping of Rehabilitation Exoskeletons
,”
2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
6
.
9.
Bianco
,
N. A.
,
Franks
,
P. W.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2022
, “
Coupled Exoskeleton Assistance Simplifies Control and Maintains Metabolic Benefits: A Simulation Study
,”
PLoS One
,
17
(
1
), p.
e0261318
.
10.
Chen
,
Q.
,
Guo
,
S.
,
Sun
,
L.
,
Liu
,
Q.
, and
Jin
,
S.
,
2021
, “
Inertial Measurement Unit-Based Optimization Control of a Soft Exosuit for Hip Extension and Flexion Assistance
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021016
.
11.
Zhou
,
X.
, and
Chen
,
X.
,
2021
, “
Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
011007
.
12.
Cho
,
K.
,
Kim
,
Y.
,
Yi
,
D.
,
Jung
,
M.
, and
Lee
,
K.
,
2012
, “
Analysis and Evaluation of a Combined Human-Exoskeleton Model Under Two Different Constraints Condition
,” Proceedings of the International Summit on Human Simulation, Vol.
5
, pp.
23
25
.
13.
Arefeen
,
A.
, and
Xiang
,
Y.
,
2022
, ”
Modeling and Simulation of a Powered Exoskeleton System to Aid Human-Robot Collaborative Lifting
,”
Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022) and Iowa Virtual Human Summit 2022, Vol. 7
,
Iowa City, IA
,
Aug. 29–31
,
University of Iowa
.
14.
Wei
,
W.
,
Zha
,
S.
,
Xia
,
Y.
,
Gu
,
J.
, and
Lin
,
X.
,
2020
, “
A Hip Active Assisted Exoskeleton That Assists the Semi-Squat Lifting
,”
Appl. Sci.
,
10
(
7
), p.
2424
.
15.
Millard
,
M.
,
Sreenivasa
,
M.
, and
Mombaur
,
K.
,
2017
, “
Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control
,”
Front. Rob. AI
,
4
, p.
41
.
16.
Heo
,
U.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2020
, “
Backdrivable and Fully-Portable Pneumatic Back Support Exoskeleton for Lifting Assistance
,”
IEEE Rob. Auto. Lett.
,
5
(
2
), pp.
2047
2053
.
17.
Koopman
,
A. S.
,
Toxiri
,
S.
,
Power
,
V.
,
Kingma
,
I.
,
van Dieën
,
J. H.
,
Ortiz
,
J.
, and
de Looze
,
M. P.
,
2019
, “
The Effect of Control Strategies for an Active Back-Support Exoskeleton on Spine Loading and Kinematics During Lifting
,”
J. Biomech.
,
91
, pp.
14
22
.
18.
Zhang
,
T.
, and
Huang
,
H.
,
2018
, “
A Lower-Back Robotic Exoskeleton: Industrial Handling Augmentation Used to Provide Spinal Support
,”
IEEE Rob. Auto. Mag.
,
25
(
2
), pp.
95
106
.
19.
Ma
,
Z.
,
Liu
,
J.
,
Ma
,
G.
,
Gao
,
J.
,
Chen
,
B.
, and
Zuo
,
S.
,
2023
, “
Lockable Lower-Limb Exoskeleton Based on a Novel Variable-Stiffness Joint: Reducing Physical Fatigue at Squatting
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051008
.
20.
Manns
,
P.
,
Sreenivasa
,
M.
,
Millard
,
M.
, and
Mombaur
,
K.
,
2017
, “
Motion Optimization and Parameter Identification for a Human and Lower Back Exoskeleton Model
,”
IEEE Rob. Auto. Lett.
,
2
(
3
), pp.
1564
1570
.
21.
Harant
,
M.
,
Sreenivasa
,
M.
,
Millard
,
M.
,
Šarabon
,
N.
, and
Mombaur
,
K.
,
2017
, “
Parameter Optimization for Passive Spinal Exoskeletons Based on Experimental Data and Optimal Control
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
,
IEEE
, pp.
535
540
.
22.
Sado
,
F.
,
Yap
,
H. J.
,
Ghazilla
,
R. A. R.
, and
Ahmad
,
N.
,
2019
, “
Design and Control of a Wearable Lower-Body Exoskeleton for Squatting and Walking Assistance in Manual Handling Works
,”
Mechatronics
,
63
, p.
102272
.
23.
Goršič
,
M.
,
Song
,
Y.
,
Dai
,
B.
, and
Novak
,
D.
,
2021
, “
Evaluation of the Herowear Apex Back-Assist Exosuit During Multiple Brief Tasks
,”
J. Biomech.
,
126
, p.
110620
.
24.
Li
,
J. M.
,
Molinaro
,
D. D.
,
King
,
A. S.
,
Mazumdar
,
A.
, and
Young
,
A. J.
,
2021
, “
Design and Validation of a Cable-Driven Asymmetric Back Exosuit
,”
IEEE Trans. Rob.
,
38
(
3
), pp.
1489
1502
.
25.
Yu
,
S.
,
Huang
,
T.-H.
,
Wang
,
D.
,
Lynn
,
B.
,
Sayd
,
D.
,
Silivanov
,
V.
,
Park
,
Y. S.
,
Tian
,
Y.
, and
Su
,
H.
,
2019
, “
Design and Control of a High-Torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention During Squatting
,”
IEEE Rob. Auto. Lett.
,
4
(
4
), pp.
4579
4586
.
26.
Gams
,
A.
,
Petrič
,
T.
,
Debevec
,
T.
, and
Babič
,
J.
,
2013
, “
Effects of Robotic Knee Exoskeleton on Human Energy Expenditure
,”
IEEE Trans. Biomed. Eng.
,
60
(
6
), pp.
1636
1644
.
27.
Wang
,
Z.
,
Wu
,
X.
,
Zhang
,
Y.
,
Chen
,
C.
,
Liu
,
S.
,
Liu
,
Y.
,
Peng
,
A.
, and
Ma
,
Y.
,
2021
, “
A Semi-Active Exoskeleton Based on EMGs Reduces Muscle Fatigue When Squatting
,”
Front. Neurorobot.
,
15
, p.
625479
.
28.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
4
), pp.
1695
1704
.
29.
Karavas
,
N.
,
Ajoudani
,
A.
,
Tsagarakis
,
N.
,
Saglia
,
J.
,
Bicchi
,
A.
, and
Caldwell
,
D.
,
2013
, “
Tele-Impedance Based Stiffness and Motion Augmentation for a Knee Exoskeleton Device
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
2194
2200
.
30.
Gill
,
P. E.
,
Murray
,
W.
, and
Saunders
,
M. A.
,
2005
, “
SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization
,”
SIAM Rev.
,
47
(
1
), pp.
99
131
.
31.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
32.
Zaman
,
R.
,
Arefeen
,
A.
,
Quarnstrom
,
J.
,
Barman
,
S.
,
Yang
,
J.
, and
Xiang
,
Y.
,
2022
, “
Optimization-Based Biomechanical Lifting Models for Manual Material Handling: A Comprehensive Review
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
236
(
9
), pp.
1273
1287
.
33.
Xiang
,
Y.
, and
Arefeen
,
A.
,
2020
, “
Two-Dimensional Team Lifting Prediction With Floating-Base Box Dynamics and Grasping Force Coupling
,”
Multi. Syst. Dyn.
,
50
(
2
), pp.
211
231
.
34.
Xiang
,
Y.
,
Arora
,
J. S.
,
Rahmatalla
,
S.
, and
Abdel-Malek
,
K.
,
2009
, “
Optimization-Based Dynamic Human Walking Prediction: One Step Formulation
,”
Inter. J. Numer. Meth. Eng.
,
79
(
6
), pp.
667
695
.
35.
Chung
,
H.-J.
,
Xiang
,
Y.
,
Mathai
,
A.
,
Rahmatalla
,
S.
,
Kim
,
J.
,
Marler
,
T.
,
Beck
,
S.
,
Yang
,
J.
,
Arora
,
J.
,
Abdel-Malek
,
K.
, et al.,
2007
, ”
A Robust Formulation for Prediction of Human Running
,” 2007 Digital Human Modeling Conference, Seattle, WA, Paper No. 2005-01-2691.
36.
Arefeen
,
A.
,
Quarnstrom
,
J.
,
Syed
,
S. P. Q.
,
Bai
,
H.
, and
Xiang
,
Y.
,
2022
, ”
Human Grasping Force Prediction, Measurement, and Validation for Human-Robot Lifting
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
86212
, St. Louis, MO, p.
V002T02A025
.
37.
Arefeen
,
A.
, and
Xiang
,
Y.
,
2021
, ”
Design Human-Robot Collaborative Lifting Task Using Optimization
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
85376
, Online, p.
V002T02A010
.
38.
Arefeen
,
A.
, and
Xiang
,
Y.
,
2020
, ”
Two-Dimensional Team Lifting Prediction With Different Box Weights
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
83983
, Online, p.
V009T09A004
.
39.
Xiang
,
Y.
,
Zaman
,
R.
,
Rakshit
,
R.
, and
Yang
,
J.
,
2019
, “
Subject-Specific Strength Percentile Determination for Two-Dimensional Symmetric Lifting Considering Dynamic Joint Strength
,”
Multi. Syst. Dyn.
,
46
(
1
), pp.
63
76
.
40.
Nguyen
,
V. Q.
,
LaPre
,
A. K.
,
Price
,
M. A.
,
Umberger
,
B. R.
, and
Sup IV
,
F. C.
,
2020
, “
Inclusion of Actuator Dynamics in Simulations of Assisted Human Movement
,”
Inter. J. Numer. Meth. Biomed. Eng.
,
36
(
5
), p.
e3334
.
You do not currently have access to this content.