Abstract

In recent years, parallel robots have become a hot research topic in trauma fracture treatment because of their high precision, high load capacity, and compact structure. However, parallel robots have disadvantages like small workspaces and complex singularity. In this article, a novel redundant parallel mechanism (RPM) for long bone fracture reduction is proposed based on Stewart parallel mechanism (SPM). Six kinematically redundant DOFs (degrees-of-freedom) are added to the RPM. First, the kinematics of the RPM is established, and its workspace is calculated. The analysis results indicate that the position workspace of the RPM is about 19 times larger than that of the SPM. The RPM has a similar range of torsion angles as the SPM, but a more extensive range of tilt angles than the SPM. Second, the singularities of the two parallel mechanisms are compared based on the dimensionally homogeneous Jacobian matrix. The results show that the dexterity of the RPM is much better than the SPM. Third, a multiparameter multi-objective optimization method is proposed to optimize the geometry parameters of the RPM. The statics of the RPM is analyzed by finite element analysis. To further expand the performance of the RPM, the unfixed RPM (URPM) is proposed. The analysis results show that the URPM is superior to the RPM in terms of workspace and dexterity. Finally, experiments are conducted to verify the effectiveness of the proposed methods in this article.

References

1.
Kumar
,
G.
, and
Narayan
,
B.
,
2014
, “Closed Intramedullary Nailing of Femoral Fractures. A Report of Five Hundred and Twenty Cases,”
Classic Papers in Orthopaedics
,
Springer
,
London, UK
, pp.
515
517
.
2.
Kempf
,
I.
,
Grosse
,
A.
, and
Beck
,
G.
,
1985
, “
Closed Locked Intramedullary Nailing. Its Application to Comminuted Fractures of the Femur
,”
J. Bone Joint Surg. Am.
,
67
(
5
), pp.
709
720
.
3.
Chung
,
G. B.
,
Lee
,
S. G.
,
Oh
,
S. M.
,
Yi
,
B. J.
,
Kim
,
W. K.
,
Kim
,
Y. S.
,
Park
,
J. I.
, and
Oh
,
S. H.
,
2004
, “
Development of Spinebot for Spine Surgery
,”
IEEE International Conference on Intelligent Robots and Systems
,
Sendai, Japan
,
Sept. 28–Oct. 2
, Vol. 4, pp.
3942
3947
.
4.
Essomba
,
T.
, and
Nguyen Phu
,
S.
,
2021
, “
Kinematic Analysis and Design of a Six-Degrees of Freedom 3-RRPS Mechanism for Bone Reduction Surgery
,”
ASME J. Med. Devices
,
15
(
1
), p.
011101
.
5.
Westphal
,
R.
,
Winkelbach
,
S.
, and
Wahl
,
F.
,
2009
, “
Robot-Assisted Long Bone Fracture Reduction
,”
Int. J. Robot. Res.
,
28
(
10
), pp.
1259
1278
.
6.
Gosling
,
T.
,
Westphal
,
R.
, and
Hufner
,
T.
,
2005
, “
Robot-Assisted Fracture Reduction: A Preliminary Study in the Femur Shaft
,”
Med. Biol. Eng. Comput.
,
43
(
1
), pp.
115
120
.
7.
Lei
,
J.
, and
Wang
,
J.
,
2023
, “
Orientation Workspace Analysis and Parameter Optimization of 3-RRPS Parallel Robot for Pelvic Fracture Reduction
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051003
.
8.
Gosling
,
T.
,
Hufner
,
T.
, and
Westphal
,
R.
,
2006
, “
Overdistraction of the Fracture Eases Reduction in Delayed Femoral Nailing: Results of Intraoperative Force Measurements
,”
J. Trauma.
,
61
(
4
), pp.
900
904
.
9.
Füchtmeier
,
B.
,
Egersdoerfer
,
S.
, and
Mai
,
R.
,
2004
, “
Reduction of Femoral Shaft Fractures in Vitro by a New Developed Reduction Robot System ‘RepoRobo’
,”
Injury
,
35
, pp.
113
119
.
10.
Fuechtmeier
,
B.
,
Egersdoerfer
,
S.
,
Tuma
,
G.
,
Monkman
,
G. J.
, and
Nerlich
,
M.
,
2003
, “
Development of a Robotic Navigation and Fracture Fixation System
,”
Stud. Health. Technol. Inform.
,
97
, pp.
43
49
.
11.
Oszwald
,
M.
,
Westphal
,
R.
, and
Bredow
,
J.
,
2009
, “
3D Visualized Robot Assisted Reduction of Femoral Shaft Fractures: Evaluation in Exposed Cadaveric Bones
,”
Technol. Health. Care.
,
17
(
4
), pp.
337
343
.
12.
Isaksson
,
M.
,
2017
, “
Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042302
.
13.
Seide
,
K.
,
Faschingbauer
,
M.
,
Wenzl
,
M. E.
,
Weinrich
,
N.
, and
Juergens
,
C.
,
2004
, “
A Hexapod Robot External Fixator for Computer Assisted Fracture Reduction and Deformity Orrection
,”
Int. J. Med. Robot.
,
1
(
1
), pp.
64
69
.
14.
Lintao
,
Y.
,
2007
, “
Key Techniques of 6-PTRT Parallel Robot and Their Application in Orthopaedic Surgery
,”
Harbin Inst. Technol.
,
1
(
12
), pp.
1
124
.
15.
Gosselin
,
C.
, and
Schreiber
,
L.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
16.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
Intell. Robot. Syst.
,
86
, pp.
175
198
.
17.
Wu
,
J.
,
Qiu
,
J.
, and
Ye
,
H.
,
2023
, “
Torque Optimization Method of a 3-DOF Redundant Parallel Manipulator Based on Actuator Torque Range
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021005
.
18.
Bhaskar
,
D.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
19.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Robot. Res.
,
11
(
3
), pp.
196
201
.
20.
Ma
,
O.
, and
Angeles
,
J.
,
1991
, “
Optimum Architecture Design of Platform Manipulators
,”
Fifth Int. Conf. Adv. Rob.
,
2
, pp.
1130
1135
.
21.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C.
,
2002
, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
2002 Parallel Kinematic Machines International Conference
,
Chemnitz, Germany
,
Jan. 21
.
22.
Gosselin
,
C.
, and
Schreiber
,
L. T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Robot.
,
32
(
2
), pp.
286
300
.
23.
Song
,
J.
,
Zhao
,
C.
,
Zhao
,
K.
,
Yan
,
W.
, and
Chen
,
Z.
,
2023
, “
Singularity Analysis and Dimensional Synthesis of a 2R1T 3-UPU Parallel Mechanism Based on Performance Atlas
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011001
.
24.
Basu
,
D.
, and
Ghosal
,
A.
,
1997
, “
Singularity Analysis of Platform-Type Multi-Loop Spatial Mechanisms
,”
Mech. Mach. Theory
,
32
(
3
), pp.
375
389
.
25.
Zhao
,
F.
,
Guo
,
S.
,
Zhang
,
C.
,
Qu
,
H.
, and
Li
,
D.
,
2019
, “
Singularity Analysis and Dexterity Performance on a Novel Parallel Mechanism With Kinematic Redundancy
,”
Int. J. Adv. Robot. Syst.
,
16
(
5
), pp.
1
15
.
26.
Pond
,
G.
, and
Carretero
,
J. A.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1388
1400
.
27.
Yang
,
H.
,
Lee
,
S.
,
Addo-Akoto
,
R.
, and
Han
,
J.
,
2023
, “
Parameter Optimization of Foldable Flapping-Wing Mechanism for Maximum Lift
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031002
.
28.
The MathWorks, Inc.
,
2023
, “
Find Pareto Front of Multiple Fitness Functions Using Genetic Algorithm
,” https://ww2.mathworks.cn/help/gads/gamultiobj.html#bvf79ug-2, Accessed March 1, 2007.
29.
Mohd
,
T.
,
Behera
,
C. K.
, and
Sinha
,
O. P.
,
2013
, “
A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications
,”
Mater. Sci. Eng. C
,
33
(
7
), pp.
3563
3575
.
30.
Liang
,
X.
,
Zeng
,
X.
,
Li
,
G.
,
Su
,
T.
, and
He
,
G.
,
2023
, “
Kinematic Analysis of Three Redundant Parallel Mechanisms for Fracture Reduction Surgery
,”
Mech. Mach. Theory
,
188
, p.
105400
.
You do not currently have access to this content.