Abstract

Origami structures have been widely used in soft robots, mechanical metamaterials, architectural engineering, and biomedical engineering in recent years, benefiting from their reconfigurable shape morphing and tunable mechanical properties through folding and unfolding. In this work, we construct a new origami structure named ring origami spring (ROS) by alternately folding two perpendicularly arranged paper ribbons of the same size and connecting two ends of them. ROS can achieve an eversion morphing with four stable states, based on which both underwater locomotion and traversing water–air interface have been implemented. Theoretical models for characterizing the eversion morphing during the transition of stable states and the induced locomotion performance of ROS have been developed, and the theoretical predictions are in good agreement with the experimental results. The current work provides a new strategy for the design of origami robots, which is potentially applied in exploring complex environments.

References

1.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
,
472
(
2190
), p.
20150846
.
2.
Dang
,
X.
,
Feng
,
F.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Theorem on the Compatibility of Spherical Kirigami Tessellations
,”
Phys. Rev. Lett.
,
128
(
3
), p.
035501
.
3.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
4.
Overvelde
,
J. T. B.
,
de Jong
,
T. A.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), p.
10929
.
5.
Babaee
,
S.
,
Overvelde
,
J. T. B.
,
Chen
,
E. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2016
, “
Reconfigurable Origami-Inspired Acoustic Waveguides
,”
Sci. Adv.
,
2
(
11
), p.
e1601019
.
6.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
7.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
8.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2020
, “
Helical Miura Origami
,”
Phys. Rev. E
,
101
(
3
), p.
033002
.
9.
Lu
,
L.
,
Dang
,
X.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Conical Kresling Origami and Its Applications to Curvature and Energy Programming
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
,
478
(
2257
), p.
20210712
.
10.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
9
), pp.
2032
2037
.
11.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2019
, “
Invariant and Smooth Limit of Discrete Geometry Folded From Bistable Origami Leading to Multistable Metasurfaces
,”
Nat. Commun.
,
10
(
1
), p.
4238
.
12.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
13.
Zhang
,
X.
,
Ma
,
J.
,
Li
,
M.
,
You
,
Z.
,
Wang
,
X.
,
Luo
,
Y.
,
Ma
,
K.
, and
Chen
,
Y.
,
2022
, “
Kirigami-Based Metastructures With Programmable Multistability
,”
Proc. Natl. Acad. Sci. U. S. A.
,
119
(
11
), p.
e2117649119
.
14.
Zhu
,
Y.
, and
Filipov
,
E. T.
,
2020
, “
A Bar and Hinge Model for Simulating Bistability in Origami Structures With Compliant Creases
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021110
.
15.
Feng
,
F.
,
Dang
,
X.
,
James
,
R. D.
, and
Plucinsky
,
P.
,
2020
, “
The Designs and Deformations of Rigidly and Flat-Foldable Quadrilateral Mesh Origami
,”
J. Mech. Phys. Solids
,
142
, p.
104018
.
16.
Dang
,
X.
,
Feng
,
F.
,
Plucinsky
,
P.
,
James
,
R. D.
,
Duan
,
H.
, and
Wang
,
J.
,
2022
, “
Inverse Design of Deployable Origami Structures That Approximate a General Surface
,”
Int. J. Solids Struct.
,
234–235
, p.
111224
.
17.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
18.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
,
472
(
2185
), p.
20150607
.
19.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
20.
Hu
,
Y.
,
Liang
,
H.
, and
Duan
,
H.
,
2019
, “
Design of Cylindrical and Axisymmetric Origami Structures Based on Generalized Miura-Ori Cell
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051004
.
21.
Rus
,
D.
, and
Tolley
,
M. T.
,
2018
, “
Design, Fabrication and Control of Origami Robots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
101
112
.
22.
Lee
,
D.-Y.
,
Kim
,
J.-S.
,
Kim
,
S.-R.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2014
, “
The Deformable Wheel Robot Using Magic-Ball Origami Structure
,” American Society of Mechanical Engineers Digital Collection, Paper No. DETC2013-13016.
23.
Li
,
X.
,
Duan
,
H.
,
Lv
,
P.
, and
Yi
,
X.
,
2021
, “
Soft Actuators Based on Liquid–Vapor Phase Change Composites
,”
Soft Robot.
,
8
(
3
), pp.
251
261
.
24.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), p.
1700360
.
25.
Silverberg
,
J. L.
,
Evans
,
A. A.
,
McLeod
,
L.
,
Hayward
,
R. C.
,
Hull
,
T.
,
Santangelo
,
C. D.
, and
Cohen
,
I.
,
2014
, “
Using Origami Design Principles to Fold Reprogrammable Mechanical Metamaterials
,”
Science
,
345
(
6197
), pp.
647
650
.
26.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
27.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.-W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.
28.
Miyashita
,
S.
,
Meeker
,
L.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Self-Folding Miniature Elastic Electric Devices
,”
Smart Mater. Struct.
,
23
(
9
), p.
094005
.
29.
Zhu
,
S.
, and
Li
,
T.
,
2014
, “
Hydrogenation-Assisted Graphene Origami and Its Application in Programmable Molecular Mass Uptake, Storage, and Release
,”
ACS Nano
,
8
(
3
), pp.
2864
2872
.
30.
Bobbert
,
F. S. L.
,
Janbaz
,
S.
,
van Manen
,
T.
,
Li
,
Y.
, and
Zadpoor
,
A. A.
,
2020
, “
Russian Doll Deployable Meta-Implants: Fusion of Kirigami, Origami, and Multi-Stability
,”
Mater. Des.
,
191
, p.
108624
.
31.
Shah
,
S. I. H.
, and
Lim
,
S.
,
2021
, “
Review on Recent Origami Inspired Antennas From Microwave to Terahertz Regime
,”
Mater. Des.
,
198
, p.
109345
.
32.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), p.
e2110023118
.
33.
Ze
,
Q.
,
Wu
,
S.
,
Dai
,
J.
,
Leanza
,
S.
,
Ikeda
,
G.
,
Yang
,
P. C.
,
Iaccarino
,
G.
, and
Zhao
,
R. R.
,
2022
, “
Spinning-Enabled Wireless Amphibious Origami Millirobot
,”
Nat. Commun.
,
13
(
1
), p.
3118
.
34.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth’s Bellows to the Deployable Kresling-Pattern and Cylindrical Miura-Ori
,”
Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM
,
Ithaca, NY
,
May 28–31
, pp.
1
4
.
35.
Chen
,
B.
,
Shao
,
Z.
,
Xie
,
Z.
,
Liu
,
J.
,
Pan
,
F.
,
He
,
L.
,
Zhang
,
L.
, et al
,
2021
, “
Soft Origami Gripper With Variable Effective Length
,”
Adv. Intell. Syst.
,
3
(
10
), p.
2000251
.
36.
Silverberg
,
J. L.
,
Na
,
J.-H.
,
Evans
,
A. A.
,
Liu
,
B.
,
Hull
,
T. C.
,
Santangelo
,
C. D.
,
Lang
,
R. J.
,
Hayward
,
R. C.
, and
Cohen
,
I.
,
2015
, “
Origami Structures With a Critical Transition to Bistability Arising From Hidden Degrees of Freedom
,”
Nat. Mater.
,
14
(
4
), pp.
389
393
.
37.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
38.
Zhai
,
Z.
,
Wang
,
Y.
,
Lin
,
K.
,
Wu
,
L.
, and
Jiang
,
H.
,
2020
, “
In Situ Stiffness Manipulation Using Elegant Curved Origami
,”
Sci. Adv.
,
6
(
47
), p.
eabe2000
.
39.
Chen
,
Q.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Origami Spring-Inspired Shape Morphing for Flexible Robotics
,”
Soft Robot.
,
9
(
4
), pp.
798
806
.
40.
Kim
,
S.
,
Qiu
,
F.
,
Kim
,
S.
,
Ghanbari
,
A.
,
Moon
,
C.
,
Zhang
,
L.
,
Nelson
,
B. J.
, and
Choi
,
H.
,
2013
, “
Fabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation
,”
Adv. Mater.
,
25
(
41
), pp.
5863
5868
.
41.
Lee
,
S.
,
Kim
,
S.
,
Kim
,
S.
,
Kim
,
J.-Y.
,
Moon
,
C.
,
Nelson
,
B. J.
, and
Choi
,
H.
,
2018
, “
A Capsule-Type Microrobot With Pick-and-Drop Motion for Targeted Drug and Cell Delivery
,”
Adv. Healthc. Mater.
,
7
(
9
), p.
1700985
.
42.
Gao
,
W.
,
Sattayasamitsathit
,
S.
,
Manesh
,
K. M.
,
Weihs
,
D.
, and
Wang
,
J.
,
2010
, “
Magnetically Powered Flexible Metal Nanowire Motors
,”
J. Am. Chem. Soc.
,
132
(
41
), pp.
14403
14405
.
43.
Ren
,
Z.
,
Hu
,
W.
,
Dong
,
X.
, and
Sitti
,
M.
,
2019
, “
Multi-Functional Soft-Bodied Jellyfish-Like Swimming
,”
Nat. Commun.
,
10
(
1
), p.
2703
.
44.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspir. Biomim.
,
6
(
3
), p.
036004
.
45.
McHenry
,
M. J.
, and
Jed
,
J.
,
2003
, “
The Ontogenetic Scaling of Hydrodynamics and Swimming Performance in Jellyfish (Aurelia Aurita)
,”
J. Exp. Biol.
,
206
(
22
), pp.
4125
4137
.
46.
Chen
,
Y.
,
Wang
,
H.
,
Helbling
,
E. F.
,
Jafferis
,
N. T.
,
Zufferey
,
R.
,
Ong
,
A.
,
Ma
,
K.
, et al
,
2017
, “
A Biologically Inspired, Flapping-Wing, Hybrid Aerial-Aquatic Microrobot
,”
Sci. Robot.
,
2
(
11
), p.
eaao5619
.
47.
Turton
,
R.
, and
Levenspiel
,
O.
,
1986
, “
A Short Note on the Drag Correlation for Spheres
,”
Powder Technol.
,
47
(
1
), pp.
83
86
.
You do not currently have access to this content.