Abstract

Developing a compliant mechanism that have potential in parasitism suppression and cross-axis decoupling is a major challenge to meet the requirement of spatial micro-/nano positioning. This work introduces a compliant tilt/tip stage design with a symmetric and overconstrained configuration that is equipped with four reverse bridge notch flexure amplifiers (RBNFAs) and five revolute notch flexure hinges as multiaxis decoupled structures. A hybrid transmission ratio model is developed to describe the mechanical behavior of this stage using elastic beam and pseudo-rigid-body theories. Finite element analysis (FEA) confirmed the analytical model results. A comprehensive study is performed based on FEA model to validate the influence of a particular configuration on parasitic motion and decoupling effect. A prototype stage is 3D printed and experimentally tested, which confirmed the predictions of the analytical hybrid model. In addition, further analysis was conducted to examine the static mechanical characteristics and parasitic behavior of the stage.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Lobontiu
,
N.
,
2020
,
Compliant Mechanisms: Design of Flexure Hinges
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
3.
Lyu
,
Z.
, and
Xu
,
Q.
,
2022
, “
Design of a New Bio-Inspired Dual-Axis Compliant Micromanipulator With Millimeter Strokes
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
470
484
.
4.
Shi
,
B.
,
Wang
,
F.
,
Han
,
C.
,
Huo
,
Z.
, and
Tian
,
Y.
,
2023
, “
Design of a Precise Positioning Stage Actuated by a Double-Layer Stick-Slip Actuator Used for Precise Assembly
,”
Mech. Mach. Theory.
,
185
, p.
105336
.
5.
Chi
,
Y.
,
Li
,
Y.
,
Zhao
,
Y.
,
Hong
,
Y.
,
Tang
,
Y.
, and
Yin
,
J.
,
2022
, “
Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities
,”
Adv. Mater.
,
34
(
19
), p.
2110384
.
6.
Tang
,
H.
, and
Li
,
Y.
,
2015
, “
Feedforward Nonlinear Pid Control of a Novel Micromanipulator Using Preisach Hysteresis Compensator
,”
Rob. Computer-Integrated Manuf.
,
34
, pp.
124
132
.
7.
Wei
,
Y.
, and
Xu
,
Q.
,
2022
, “
Design of a New Passive End-effector Based on Constant-force Mechanism for Robotic Polishing
,”
Rob. Computer-Integrated Manuf.
,
74
, p.
102278
.
8.
Zhao
,
D.
,
Du
,
H.
,
Wang
,
H.
, and
Zhu
,
Z.
,
2023
, “
Development of a Novel Fast Tool Servo Using Topology Optimization
,”
Int. J. Mech. Sci.
,
250
, p.
108283
.
9.
Du
,
X.
,
Shen
,
D.
,
Huang
,
P.
,
Zhu
,
L.
, and
Zhu
,
Z.
,
2023
, “
Dual-Stage Fast Tool Servo Cascading a Primary Normal-Stressed Electromagnetic Stage With a Secondary Piezo-Actuated Stage
,”
Precis. Eng.
,
80
, pp.
171
179
.
10.
Lyu
,
Z.
,
Xu
,
Q.
, and
Zhu
,
L.
,
2023
, “
Design of a Compliant Vertical Micropositioning Stage Based on Lamina Emergent Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
2131
2141
.
11.
Zhang
,
C.
,
Zhou
,
M.
,
Nie
,
L.
,
Zhang
,
X.
, and
Su
,
C. Y.
,
2023
, “
Prandtl–Ishlinskii Model Based Event-Triggered Prescribed Control: Design and Application to Piezoelectric-Driven Micropositioning Stage
,”
Mech. Syst. Signal. Process.
,
200
, p.
110562
.
12.
Lyu
,
Z.
, and
Xu
,
Q.
,
2023
, “
Design and Testing of a Large-Workspace XY Compliant Manipulator Based on Triple-Stage Parallelogram Flexure
,”
Mech. Mach. Theory.
,
184
, p.
105287
.
13.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Chen
,
G.
,
2020
, “
Kinetostatic and Dynamic Modeling of Flexure-Based Compliant Mechanisms: A Survey
,”
ASME J. Appl. Mech. Rev.
,
72
(
3
), p.
030802
.
14.
Li
,
R.
,
Yang
,
Z.
,
Cai
,
B.
,
Chen
,
G.
,
Wu
,
B.
, and
Wei
,
Y.
,
2022
, “
A Compliant Guiding Mechanism Utilizing Orthogonally Oriented Flexures With Enhanced Stiffness in Degrees-of-Constraint
,”
Mech. Mach. Theory.
,
167
, p.
104555
.
15.
Xu
,
H.
,
Gan
,
J.
, and
Zhang
,
X.
,
2020
, “
A Generalized Pseudo-Rigid-Body PPRR Model for Both Straight and Circular Beams in Compliant Mechanisms
,”
Mech. Mach. Theory.
,
154
, p.
104054
.
16.
Hao
,
G.
,
2017
, “
Determinate Synthesis of Symmetrical, Monolithic Tip–Tilt–Piston Flexure Stages
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042303
.
17.
Dong
,
W.
,
Zhang
,
Q.
,
Zhu
,
D.
,
Chen
,
T.
, and
Gao
,
Y.
,
2023
, “
Design and Analysis of a Piezo-Actuated 2-dof High-Precision Parallel Pointing Mechanism Capable of Carrying a Heavy Load
,”
Precis. Eng.
,
81
, pp.
50
59
.
18.
Lee
,
H. J.
,
Kim
,
H. C.
,
Kim
,
H. Y.
, and
Gweon
,
D. G.
,
2013
, “
Optimal Design and Experiment of a Three-Axis Out-of-Plane Nano Positioning Stage Using a New Compact Bridge-Type Displacement Amplifier
,”
Rev. Sci. Instrum.
,
84
(
11
), pp.
4
10
.
19.
Palpacelli
,
M.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2012
, “
A Redundantly Actuated 2-Degrees-of-Freedom Mini Pointing Device
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031012
.
20.
Qu
,
J.
,
Chen
,
W.
,
Zhang
,
J.
, and
Chen
,
W.
,
2016
, “
A Piezo-Driven 2-DOF Compliant Micropositioning Stage With Remote Center of Motion
,”
Sens. Actuators., A.
,
239
, pp.
114
126
.
21.
Ling
,
M.
,
Song
,
D.
,
Zhang
,
X.
,
He
,
X.
,
Li
,
H.
,
Wu
,
M.
,
Cao
,
L.
, and
Lu
,
S.
,
2022
, “
Analysis and Design of Spatial Compliant Mechanisms Using a 3-d Dynamic Stiffness Model
,”
Mech. Mach. Theory.
,
168
, p.
104581
.
22.
Hao
,
G.
, and
Kong
,
X.
,
2016
, “
A Structure Design Method for Compliant Parallel Manipulators With Actuation Isolation
,”
Mech. Sci.
,
7
(
2
), pp.
247
253
.
23.
Yu
,
J.
,
Lu
,
D.
, and
Hao
,
G.
,
2016
, “
Design and Analysis of a Compliant Parallel Pan-Tilt Platform
,”
Meccanica
,
51
, pp.
1559
1570
.
24.
Zhu
,
J.
,
Hao
,
G.
,
Li
,
S.
, and
Kong
,
X.
,
2022
, “
A Compact Mirror-Symmetrical XY Compliant Parallel Manipulator for Minimizing Parasitic Rotations
,”
ASME J. Mech. Des.
,
144
(
7
), p.
073303
.
25.
Chen
,
X.
,
Li
,
Y.
,
Xie
,
Y.
, and
Wang
,
R.
,
2022
, “
Design and Analysis of New Ultra Compact Decoupled XYZ Stage to Achieve Large-Scale High Precision Motion
,”
Mech. Mach. Theory.
,
167
, p.
104527
.
26.
Yang
,
J.
, and
Yan
,
P.
,
2023
, “
Modeling and Analysis for Triaxial Flexure Mechanisms With Symmetric Overconstrained Configurations
,”
2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)
,
Chengdu, China
,
July 31–Aug. 4
, pp.
52
57
.
27.
Li
,
H.
,
Liu
,
Y.
,
Wang
,
Z.
,
Leng
,
C.
,
Zhang
,
Z.
, and
Hao
,
G.
,
2022
, “
A Constraint-Flow Based Method of Synthesizing XY Compliant Parallel Mechanisms With Decoupled Motion and Actuation Characteristics
,”
Mech. Mach. Theory.
,
178
, p.
105085
.
28.
Zhu
,
J.
,
Hao
,
G.
,
Liu
,
T.
, and
Li
,
H.
,
2023
, “
Design of an Over-Constraint Based Nearly-Constant Amplification Ratio Compliant Mechanism
,”
Mech. Mach. Theory.
,
186
, p.
105347
.
29.
Milojević
,
A. P.
, and
Pavlović
,
N. D.
,
2016
, “
Development of a New Adaptive Shape Morphing Compliant Structure With Embedded Actuators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
10
), pp.
1306
1328
.
30.
Liu
,
J.
,
Yue
,
T.
, and
Guo
,
Z.
,
2010
, “
An Analysis of the Discharge Mechanism in Electrochemical Discharge Machining of Particulate Reinforced Metal Matrix Composites
,”
Int. J. Mach. Tools. Manuf.
,
50
(
1
), pp.
86
96
.
31.
Miller
,
S. F.
,
Kao
,
C. C.
,
Shih
,
A. J.
, and
Qu
,
J.
,
2004
, “
Investigation of Wire Electrical Discharge Machining of Thin Cross-Sections and Compliant Mechanisms
,”
Int. J. Mach. Tools. Manuf.
,
45
(
15
), pp.
1717
1725
.
32.
Lobontiu
,
N.
,
Hunter
,
J.
,
Keefe
,
J.
, and
Westenskow
,
J.
,
2022
, “
Tripod Mechanisms With Novel Spatial Cartesian Flexible Hinges
,”
Mech. Mach. Theory.
,
167
, p.
104521
.
33.
Lobontiu
,
N.
,
Westenskow
,
J.
,
Keefe
,
J.
, and
Hunter
,
J.
,
2021
, “
New Series and Parallel 3d Cartesian Right Circularly Corner-Filleted Flexible Hinges
,”
Precis. Eng.
,
72
, pp.
653
663
.
34.
Clark
,
L.
,
Shirinzadeh
,
B.
,
Bhagat
,
U.
,
Smith
,
J.
, and
Zhong
,
Y.
,
2015
, “
Development and Control of a Two Dof Linear-Angular Precision Positioning Stage
,”
Mechatronics
,
32
, pp.
34
43
.
35.
Zhang
,
L.
,
Liu
,
P.
, and
Yan
,
P.
,
2021
, “
A Novel Compact Tilt Stage With Additive Manufacturable Spatial Flexure Mechanism Driven by Asymmetric Stiffness
,”
Mech. Mach. Theory.
,
166
, p.
104443
.
36.
Yoon
,
K.-T.
,
Lim
,
H.
,
Bae
,
J.-H.
,
Lee
,
W. K.
,
Kim
,
D.
, and
Choi
,
Y.-M.
,
2022
, “
Novel Multi-Electromagnetic-Force-Compensation Weighing Cell With Axis-Symmetric Structure
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
6018
6023
.
37.
Liang
,
C.
,
Wang
,
F.
,
Huo
,
Z.
,
Shi
,
B.
,
Tian
,
Y.
,
Zhao
,
X.
, and
Zhang
,
D.
,
2019
, “
A 2-dof Monolithic Compliant Rotation Platform Driven by Piezoelectric Actuators
,”
IEEE. Trans. Ind. Electron.
,
67
(
8
), pp.
6963
6974
.
38.
Ma
,
H.-W.
,
Yao
,
S.-M.
,
Wang
,
L.-Q.
, and
Zhong
,
Z.
,
2006
, “
Analysis of the Displacement Amplification Ratio of Bridge-Type Flexure Hinge
,”
Sens. Actuators., A.
,
132
(
2
), pp.
730
736
.
39.
Liu
,
P.
, and
Yan
,
P.
,
2016
, “
A New Model Analysis Approach for Bridge-Type Amplifiers Supporting Nano-Stage Design
,”
Mech. Mach. Theory.
,
99
, pp.
176
188
.
40.
Zhang
,
Q.
,
Zhao
,
J.
,
Peng
,
Y.
,
Pu
,
H.
, and
Yang
,
Y.
,
2020
, “
A Novel Amplification Ratio Model of a Decoupled Xy Precision Positioning Stage Combined With Elastic Beam Theory and Castigliano’s Second Theorem Considering the Exact Loading Force
,”
Mech. Syst. Signal. Process.
,
136
, p.
106473
.
41.
Yang
,
J.
, and
Yan
,
P.
,
2024
, “
Generalized Model and Performance Analysis of Elliptical-Fillet Cross-sectional Flexure Hinges
,”
Proc. Inst. Mech. Eng., Part C: J. Mechanic. Eng. Sci.
,
238
(
5
), pp.
1355
1365
.
42.
Zhang
,
S.
,
Liu
,
J.
,
Ding
,
H.
, and
Gao
,
G.
,
2021
, “
A Novel Compliance Modeling Method for Compliant Parallel Mechanisms and Its Application
,”
Mech. Mach. Theory.
,
162
, p.
104336
.
43.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.