Abstract

Clustered tensegrity mechanisms have elicited extensive attention in recent research due to their easy control system and high stiffness-to-mass ratio. However, modeling and analyzing these mechanisms are still challenging due to the clustering of cables and redundant structural parameters. This article proposes an energy-based kinematic modeling method for a modular clustered tensegrity mobile robot. The design of the clustered tensegrity robot is inspired by the biomechanics of worms, allowing it to achieve two locomotion modes resembling earthworm-like and inchworm-like movements using two motors. Moreover, the clustered and modular structure enables the robot to increase the number of modules as needed without increasing the number of actuators. This feature enhances the robot's terrain adaptability without adding complexity to the control system. The article establishes kinematic models using the energy method and clarifies the motion law of nodes on the sliding cables of the robot, considering multiple structural parameters for both locomotion modes. Based on these models, the article reveals the mapping relationships among various structural parameters (i.e., cable-hole gap, cable-hole friction, stiffness and original length of elastic cables, and ground–robot friction) and locomotion performance (i.e., morphology, displacement, and velocity) of the robot. Furthermore, structural parameter optimization is performed to enhance the kinematic performance of the robot in both locomotion modes simultaneously. To validate the proposed kinematic modeling method, a prototype with two modules is developed, and experiments are conducted to assess the robot's locomotion performance. These experiments demonstrate the effectiveness and rationality of the proposed method.

References

1.
Wang
,
Z. J.
,
Li
,
K.
,
He
,
Q. G.
, and
Cai
,
S. Q.
,
2019
, “
A Light-Powered Ultralight Tensegrity Robot With High Deformability and Load Capacity
,”
Adv. Mater.
,
31
(
7
), p.
e1806849
.
2.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
Minimal Mass Design of Active Tensegrity Structure
,”
Eng. Struct.
,
234
, p.
111965
.
3.
Yang
,
S.
, and
Sultan
,
C.
,
2019
, “
Deployment of Foldable Tensegrity-Membrane Systems via Transition Between Tensegrity Configurations and Tensegrity-Membrane Configurations
,”
Int. J. Solids Struct.
,
160
, pp.
103
119
.
4.
Chen
,
L. H.
,
Cera
,
B.
,
Zhu
,
E. L.
,
Edmunds
,
R.
,
Rice
,
F.
,
Bronars
,
A.
,
Tang
,
E.
, et al
,
2017
, “
Inclined Surface Locomotion Strategies for Spherical Tensegrity Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
, pp.
4976
4981
.
5.
Kim
,
K.
,
Agogino
,
A. K.
, and
Agogino
,
A. M.
,
2020
, “
Rolling Locomotion of Cable-Driven Soft Spherical Tensegrity Robots
,”
Soft Rob.
,
7
(
3
), pp.
346
361
.
6.
Baines
,
R. L.
,
Booth
,
J. W.
, and
Kramer-Bottiglio
,
R.
,
2020
, “
Rolling Soft Membrane-Driven Tensegrity Robots
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6567
6574
.
7.
Sabelhaus
,
A. P.
,
Ji
,
H.
,
Hylton
,
P.
,
Madaan
,
Y.
,
Yang
,
C.
,
Agogino
,
A. M.
,
Friesen
,
J.
, and
Sunspiral
,
V.
,
2015
, “
Mechanism Design and Simulation of the ULTRA Spine: A Tensegrity Robot
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
8.
Tietz
,
B. R.
,
Carnahan
,
R. W.
,
Bachmann
,
R. J.
,
Quinn
,
R. D.
, and
Sunspiral
,
V.
,
2013
, “
Tetraspine: Robust Terrain Handling on a Tensegrity Robot Using Central Pattern Generators
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Wollongong, Australia
,
July 9–12
, pp.
261
267
.
9.
Campanaro
,
L.
,
2018
,
Sensor Integration and Controller Design for a Tensegrity-Modular Robot
,
Politecnico di Torino
.
10.
Sabelhaus
,
A. P.
,
Bruce
,
J.
,
Caluwaerts
,
K.
,
Manovi
,
P.
,
Firoozi
,
R. F.
,
Dobi
,
S.
,
Agogino
,
A. M.
, and
Sunspiral
,
V.
,
2015
, “
System Design and Locomotion of SUPERball, an Untethered Tensegrity Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
2867
2873
.
11.
Iscen
,
A.
,
Caluwaerts
,
K.
,
Bruce
,
J.
,
Agogino
,
A.
,
Sunspiral
,
V.
, and
Tumer
,
K.
,
2015
, “
Learning Tensegrity Locomotion Using Open-Loop Control Signals and Coevolutionary Algorithms
,”
Artif. Life
,
21
(
2
), pp.
119
140
.
12.
Sunspiral
,
V.
,
Gorospe
,
G.
,
Bruce
,
J.
,
Iscen
,
A.
,
Korbel
,
G.
,
Milam
,
S.
,
Agogino
,
A.
, and
Atkinson
,
D.
,
2013
, “
Tensegrity Based Probes for Planetary Exploration: Entry, Descent and Landing (EDL) and Surface Mobility Analysis
,”
Int. J. Planet. Probes.
13.
Zhang
,
L.
,
Gao
,
Q.
,
Liu
,
Y.
, and
Zhang
,
H. W.
,
2016
, “
An Efficient Finite Element Formulation for Nonlinear Analysis of Clustered Tensegrity
,”
Eng. Comput.
,
33
(
1
), pp.
252
273
.
14.
Moored
,
K. W.
, and
Bart-Smith
,
H.
,
2009
, “
Investigation of Clustered Actuation in Tensegrity Structures
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3272
3281
.
15.
Dong
,
Y.
,
Ding
,
J. Z.
,
Wang
,
C. J.
, and
Liu
,
X. A.
,
2021
, “
Kinematics Analysis and Optimization of a 3-DOF Planar Tensegrity Manipulator Under Workspace Constraint
,”
Machine
,
9
, p.
11
.
16.
Wenger
,
P.
, and
Chablat
,
D.
,
2019
, “
Kinetostatic Analysis and Solution Classification of a Class of Planar Tensegrity Mechanisms
,”
Robotica
,
37
(
7
), pp.
1214
1224
.
17.
Arsenault
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Kinematic, Static and Dynamic Analysis of a Planar 2-DOF Tensegrity Mechanism
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1072
1089
.
18.
Schorr
,
P.
,
Li
,
E. R. C.
,
Kaufhold
,
T.
,
Hernández
,
J. A. R.
,
Zentner
,
L.
,
Zimmermann
,
K.
, and
Böhm
,
V.
,
2021
, “
Kinematic Analysis of a Rolling Tensegrity Structure With Spatially Curved Members
,”
Meccanica
,
56
(
4
), pp.
953
961
.
19.
Boehler
,
Q.
,
Charpentier
,
I.
,
Vedrines
,
M. S.
, and
Renaud
,
P.
, “
Definition and Computation of Tensegrity Mechanism Workspace
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044502
.
20.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1991
, “
Hyper-Redundant Robot Mechanisms and Their Applications
,”
Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems
,
Osaka, Japan
,
Nov. 3–5
, pp.
185
190
.
21.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
263
273
.
22.
Palmer
,
D.
,
Cobos-Guzman
,
S.
, and
Axinte
,
D.
,
2014
, “
Real-Time Method for Tip Following Navigation of Continuum Snake Arm Robots
,”
Rob. Auton. Syst.
,
62
(
10
), pp.
1478
1485
.
23.
Tonapi
,
M. M.
,
Godage
,
I. S.
, and
Walker
,
I. D.
,
2014
, “
Design, Modeling and Performance Evaluation of a Long and Slim Continuum Robotic Cable
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2852
2859
.
24.
Zhang
,
Z.
,
Yang
,
G. L.
, and
Yeo
,
S. H.
,
2011
, “
Inverse Kinematics of Modular Cable-Driven Snake-Like Robots With flexible Backbones
,”
Proceedings of the IEEE 5th International Conference on Robotics, Automation and Mechatronics
,
Qingdao, China
,
Sept. 17–19
, pp.
41
46
.
25.
Li
,
Z.
, and
Du
,
R.
,
2014
, “
Expanding Workspace of Underactuated flexible Manipulators by Actively Deploying Constraints
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
2901
2906
.
26.
Li
,
Z.
,
Chiu
,
P. W. Y.
, and
Du
,
R.
,
2016
, “
Design and Kinematic Modeling of a Concentric Wire-Driven Mechanism Targeted for Minimally Invasive Surgery
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
310
316
.
27.
Starke
,
J.
,
Amanov
,
E.
,
Chikhaoui
,
M. T.
, and
Burgner-Kahrs
,
J.
,
2017
, “
On the Merits of Helical Tendon Routing in Continuum Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, Canada
,
Sept. 24–28
, pp.
6470
6476
.
28.
Bai
,
S. P.
,
2013
, “
Shape Modeling of Continuous-Curvature Continuum Robots
,”
Mech. Mach. Sci.
,
15
, pp.
75
83
.
29.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Model Approach to Hyper Redundant Manipulator Kinematics
,”
IEEE Trans. Rob. Autom.
,
10
(
3
), pp.
343
354
.
30.
Song
,
S.
,
Li
,
Z.
,
Yu
,
H.
, and
Ren
,
H.
,
2015
, “
Shape Reconstruction for Wire-Driven flexible Robots Based on Bézier Curve and Electromagnetic Positioning
,”
Mechatronics
,
29
, pp.
28
35
.
31.
Maeda
,
K.
,
Shinoda
,
H.
, and
Tsumori
,
F.
,
2020
, “
Miniaturization of Worm-Type Soft Robot Actuated by Magnetic Field
,”
Jpn. J. Appl. Phys.
,
59
(
SI
), p.
SIIL04
.
32.
Hemingway
,
E. G.
, and
O’Reilly
,
O. M.
,
2021
, “
Continuous Models for Peristaltic Locomotion With Application to Worms and Soft Robots
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
5
30
.
33.
Joyee
,
E. B.
, and
Pan
,
Y. Y.
,
2019
, “
A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot With Magnetic Actuation
,”
Soft Rob.
,
6
(
3
), pp.
333
345
.
34.
Li
,
F.
,
Peng
,
H. J.
,
Yang
,
H.
, and
Kan
,
Z. Y.
,
2021
, “
A Symplectic Kinodynamic Planning Method for Cable-Driven Tensegrity Manipulators in a Dynamic Environment
,”
Nonlinear Dyn.
,
106
(
4
), pp.
2919
2941
.
35.
Segreti
,
S. M.
,
Kutzer
,
M. D. M.
,
Murphy
,
R. J.
, and
Armand
,
M.
,
2012
, “
Cable Length Estimation for a Compliant Surgical Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
St Paul, MN
,
May 14–18
, pp.
701
708
.
36.
Jung
,
J.
,
Penning
,
R. S.
,
Ferrier
,
N. J.
, and
Zinn
,
M. R.
,
2011
, “
A Modeling Approach for Continuum Robotic Manipulators: Effects of Nonlinear Internal Device Friction
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
5139
5146
.
37.
Cao
,
G. Z.
,
Chu
,
B.
, and
Liu
,
Y. H.
,
2020
, “
Analytical Modeling and Control of Soft Fast Pneumatic Networks Actuators
,”
Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society
,
Singapore
,
Oct. 19–21
, pp.
2760
2765
.
38.
Eathakota
,
V.
,
Aditya
,
G.
, and
Krishna
,
M.
,
2011
, “
Quasi-static Motion Planning on Uneven Terrain for a Wheeled Mobile Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
4314
4320
.
39.
Yang
,
C. H.
,
Kang
,
R. J.
,
Branson
,
D. R.
,
Chen
,
L. S.
, and
Dai
,
J. S.
,
2019
, “
Kinematics and Statics of Eccentric Soft Bending Actuators With External Payloads
,”
Mech. Mach. Theory
,
139
, pp.
526
541
.
40.
Goldstcin
,
H.
,
Poole
,
C.
, and
Safko
,
J.
,
2000
,
Classical Mechanics
, 3rd ed.,
Flushing
,
New York
.
You do not currently have access to this content.