Abstract

Cable-driven parallel manipulators and parallel continuum manipulators have attracted increasing attention in pick-and-place manipulation, owing to their low inertia and high safety. In cable-driven parallel robots, cables are utilized to control a moving platform, whereas parallel continuum manipulators employ flexible limbs. By combing these two types of mechanisms, the authors propose a novel flexible limb/cable hybrid-driven parallel continuum manipulator (HDPCM). The flexible limbs, equipped with their ability to withstand pushing forces applied on the moving platform, are a critical component of the HDPCM. Meanwhile, the cables, with their proficiency to modulate the shape of the flexible limbs and endure some of the pulling force, reduce the possibility of large divergence in flexible limbs. This results in an improved reachable workspace and load capacity for the manipulator. To predict the configuration of the proposed manipulator, an efficient kinetostatics analysis is given, utilizing a discretization-based approach. Among the infinitely many solutions to the inverse problem, the configuration with minimal potential energy is selected as the optimal solution. Finally, a prototype is fabricated, and validation experiments are conducted, which demonstrate that the prototype exhibits acceptable positioning accuracy and passive compliance. Furthermore, the proposed manipulator is validated to possess relatively superior performance in the workspace and load capacity.

References

1.
Gosselin
,
C.
,
2014
, “
Cable-Driven Parallel Mechanisms: State of the Art and Perspectives
,”
Mech. Eng. Rev.
,
1
(
1
), p.
DSM0004
.
2.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W.-W.
, and
Xu
,
Q.-S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
11
.
3.
Dekker
,
R.
,
Khajepour
,
A.
, and
Behzadipour
,
S.
,
2006
, “
Design and Testing of An Ultra-High-Speed Cable Robot
,”
Int. J. Robot. Autom.
,
21
(
1
), pp.
25
34
.
4.
Pott
,
A.
,
Mütherich
,
H.
,
Kraus
,
W.
,
Schmidt
,
V.
,
Miermeister
,
P.
, and
Verl
,
A.
,
2013
, “Ipanema: A Family of Cable-Driven Parallel Robots for Industrial Applications,”
Cable-Driven Parallel Robots
,
T.
Bruckmann
and
A.
Pott
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
119
134
.
5.
Zhang
,
N.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Dynamic Trajectory Planning for a Spatial 3-DOF Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
122
(
1
), pp.
177
196
.
6.
Sugahara
,
Y.
,
Chen
,
G.
,
Atsumi
,
N.
,
Matsuura
,
D.
,
Takeda
,
Y.
,
Mizutani
,
R.
, and
Katamura
,
R.
,
2020
, “
A Suspended Cable-Driven Parallel Robot for Human-Cooperative Object Transportation
,”
ROMANSY 23-Robot Design, Dynamics and Control: Proceedings of the 23rd CISM IFToMM Symposium
,
Sapporo, Japan
, Springer Nature, Vol. 601. doi.org/10.1007/978-3-030-58380-4_14
7.
McDonald
,
E.
,
Arsenault
,
M.
, and
Beites
,
S.
,
2023
, “
Design of a 3-Degrees-of-Freedom Cable-Driven Parallel Robot for Automated Construction Based on Workspace and Kinematic Sensitivity
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021006
.
8.
Zi
,
B.
,
Sun
,
H.
, and
Zhang
,
D.
,
2017
, “
Design, Analysis and Control of a Winding Hybrid-Driven Cable Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
48
(
3
), pp.
196
208
.
9.
Qian
,
S.
,
Bao
,
K.
,
Zi
,
B.
, and
Wang
,
N.
,
2018
, “
Kinematic Calibration of a Cable-Driven Parallel Robot for 3d Printing
,”
Sensors
,
18
(
9
), p.
2898
.
10.
Gueners
,
D.
,
Chanal
,
H.
, and
Bouzgarrou
,
B.-C.
,
2022
, “
Design and Implementation of a Cable-Driven Parallel Robot for Additive Manufacturing Applications
,”
Mechatronics
,
86
(
1
), p.
102874
.
11.
Zhang
,
Z.
,
Shao
,
Z.
,
Wang
,
L.
, and
Shih
,
A. J.
,
2018
, “Optimal Design of a High-Speed Pick-and Place Cable-Driven Parallel Robot,”
Cable-Driven Parallel Robots
,
C.
Gosselin
,
P.
Cardou
,
T.
Bruckmann
, and
A.
Pott
, eds., Vol.
53
,
Springer
,
Quebec, QC, Canada
, pp.
340
352
. doi.org/10.1007/978-3-319-61431-1_29
12.
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Optimization and Implementation of a High-Speed 3-dofs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
(
1
), p.
103693
.
13.
Liu
,
S.
,
Mei
,
J.
,
Wang
,
P.
, and
Guo
,
F.
,
2023
, “
Optimal Design of a Coupling-Input Cable-Driven Parallel Robot With Passive Limbs Based on Force Space Analysis
,”
Mech. Mach. Theory
,
184
(
1
), p.
105296
.
14.
Bryson
,
C. E.
, and
Rucker
,
D. C.
,
2014
, “
Toward Parallel Continuum Manipulators
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
June 5
, IEEE, pp.
778
785
.
15.
Orekhov
,
A. L.
,
Black
,
C. B.
,
Till
,
J.
,
Chung
,
S.
, and
Rucker
,
D. C.
,
2016
, “
Analysis and Validation of a Teleoperated Surgical Parallel Continuum Manipulator
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
828
835
.
16.
Black
,
C. B.
,
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
29
47
.
17.
Till
,
J.
, and
Rucker
,
D. C.
,
2017
, “
Elastic Stability of Cosserat Rods and Parallel Continuum Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
718
733
.
18.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.
19.
Briot
,
S.
, and
Goldsztejn
,
A.
,
2021
, “
Singularity Conditions for Continuum Parallel Robots
,”
IEEE Trans. Rob.
,
38
(
1
), pp.
507
525
.
20.
Zaccaria
,
F.
,
Idá
,
E.
, and
Briot
,
S.
,
2024
, “
A Boundary Computation Algorithm for the Workspace Evaluation of Continuum Parallel Robots
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041010
.
21.
Young
,
E. M.
, and
Kuchenbecker
,
K. J.
,
2019
, “
Implementation of a 6-dof Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues
,”
IEEE Trans. Haptic
,
12
(
3
), pp.
295
306
.
22.
Young
,
E. M.
, and
Kuchenbecker
,
K. J.
,
2017
, “
Design of a Parallel ContinuumManipulator for 6-dof Fingertip Haptic Display
,”
2017 IEEE World Haptics Conference (WHC)
,
Munich, Germany
,
July 27
,
IEEE
, pp.
599
604
.
23.
Altuzarra
,
O.
,
Caballero
,
D.
,
Campa
,
F. J.
, and
Pinto
,
C.
,
2019
, “
Position Analysis in Planar Parallel Continuum Mechanisms
,”
Mech. Mach. Theory
,
132
(
1
), pp.
13
29
.
24.
Díaz-Caneja
,
D.
,
Campa
,
F. J.
, and
Altuzarra
,
O.
,
2021
, “
Design and Modeling of a Parallel Continuum Manipulator for Trunk Motion Rehabilitation
,”
ASME J. Med. Devices
,
15
(
1
), p.
011109
.
25.
Altuzarra
,
O.
,
Tagliavini
,
L.
,
Lei
,
Y.
,
Petuya
,
V.
, and
Ruiz-Erezuma
,
J. L.
,
2023
, “
On Constraints and Parasitic Motions of a Tripod Parallel Continuum Manipulator
,”
Machines
,
11
(
1
), p.
71
.
26.
Altuzarra
,
O.
,
Urizar
,
M.
,
Cichella
,
M.
, and
Petuya
,
V.
,
2023
, “
Kinematic Analysis of Three Degrees of Freedom Planar Parallel Continuum Mechanisms
,”
Mech. Mach. Theory
,
185
(
1
), p.
105311
.
27.
Mauzé
,
B.
,
Dahmouche
,
R.
,
Laurent
,
G. J.
,
André
,
A. N.
,
Rougeot
,
P.
,
Sandoz
,
P.
, and
Clévy
,
C.
,
2020
, “
Nanometer Precision With a Planar Parallel Continuum Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
3806
3813
.
28.
Nuelle
,
K.
,
Sterneck
,
T.
,
Lilge
,
S.
,
Xiong
,
D.
,
Burgner-Kahrs
,
J.
, and
Ortmaier
,
T.
,
2020
, “
Modeling, Calibration, and Evaluation of a Tendon-Actuated Planar Parallel Continuum Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5811
5818
.
29.
Böttcher
,
G.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Design of a Reconfigurable Parallel Continuum Robot With Tendon-Actuated Kinematic Chains
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1272
1279
.
30.
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2022
, “
Kinetostatic Modeling of Tendon-Driven Parallel Continuum Robots
,”
IEEE Trans. Rob.
,
39
(
2
).
31.
Wen
,
K.
, and
Burgner-Kahrs
,
J.
,
2023
, “
Modeling and Analysis of Tendon-Driven Parallel Continuum Robots Under Constant Curvature and Pseudo-Rigid-Body Assumptions
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041003
.
32.
Wilson
,
M.
,
2011
, “
Festo Drives Automation Forwards
,”
Assem. Autom.
,
31
(
1
), pp.
12
16
.
33.
Wu
,
G.
, and
Shi
,
G.
,
2019
, “
Experimental Statics Calibration of a Multi-Constraint Parallel Continuum Robot
,”
Mech. Mach. Theory
,
136
(
1
), pp.
72
85
.
34.
Wu
,
G.
, and
Shi
,
G.
,
2022
, “
Design, Modeling, and Workspace Analysis of an Extensible Rod-Driven Parallel Continuum Robot
,”
Mech. Mach. Theory
,
172
(
1
), p.
104798
.
35.
Orekhov
,
A. L.
,
Aloi
,
V. A.
, and
Rucker
,
D. C.
,
2017
, “
Modeling Parallel Continuum Robots With General Intermediate Constraints
,”
2017 IEEE International Conference on Robotics and Automation
,
Singapore
, pp.
6142
6149
.
36.
Chen
,
G.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2018
, “
A General Approach to the Large Deflection Problems of Spatial Flexible Rods Using Principal Axes Decomposition of Compliance Matrices
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031012
.
37.
Chen
,
G.
,
Wang
,
H.
,
Lin
,
Z.
, and
Lai
,
X.
,
2015
, “
The Principal Axes Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
191
207
.
38.
Chen
,
G.
,
Kang
,
Y.
,
Liang
,
Z.
,
Zhang
,
Z.
, and
Wang
,
H.
,
2021
, “
Kinetostatics Modeling and Analysis of Parallel Continuum Manipulators
,”
Mech. Mach. Theory
,
163
(
1
), p.
104380
.
39.
Bertsekas
,
D. P.
,
1982
,
Constrained Optimization and Lagrange Multiplier Methods
,
Academic Press
,
London, UK
.
40.
Mochiyama
,
H.
,
Kinoshita
,
A.
, and
Takasu
,
R.
,
2013
, “
Impulse Force Generator Based on Snap-Through Buckling of Robotic Closed Elastica: Analysis by Quasi-Static Shape Transition Simulation
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
, pp.
4583
4589
.
41.
Johnson
,
L. W.
, and
Riess
,
R. D.
,
1977
,
Numerical Analysis
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.