Abstract

The fish-like propulsion robot is becoming a profound intelligent equipment due to its excellent swimming ability and good environmental adaptability. In this paper, we propose the oscillating fin based on the fish swimming mechanism, which is compounded with the locomotion modes of sway and yaw. The kinematic and dynamic models are established to study the locomotion mechanism of the oscillating fin. The hydrodynamic performance of underwater locomotion is investigated to analyze the velocity, the propulsive force, the pressure, the propulsive efficiency, and the vortices property. Finally, the experimental measurements of the robot with oscillating fin propulsion are carried out to analyze the underwater propulsion of the oscillating fin and the unsteady fluid flow with Strouhal number. The results illustrate that the propulsive force is fluctuating, and the velocity is increasing to the maximum value. The underwater propulsion velocity could reach 1.2 m/s in a period of 0.4 s. Besides, the high- and low-pressure regions change alternatively, and the fin deforming process illustrates the vortices property and the locomotion mechanism analyses. The propulsive efficiency of the oscillating fin with compound waves is increased by 11% compared with that of the one without deformation. The experiments of the robot prototype verify the numerical simulation, and the propulsive velocity with a period of 0.4 s is two times larger than that of a period of 0.8 s. The Strouhal number of each motion mode is obtained through theoretical and experimental analyses.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Xiang
,
X.
,
Hu
,
T.
,
Zhou
,
H.
, and
Ma
,
Z.
,
2014
, “
Evaluating the Fin-Ray Trajectory Tracking of Bio-Inspired Robotic Undulating Fins via an Experimental-Numerical Approach
,”
Int. J. Adv. Rob. Syst.
,
11
(
7
), p.
98
.
2.
Zhou
,
H.
,
Hu
,
T.
,
Low
,
K. H.
,
Shen
,
L.
,
Ma
,
Z.
,
Wang
,
G.
, and
Xu
,
H.
,
2015
, “
Bio-Inspired Flow Sensing and Prediction for Fish-Like Undulating Locomotion: A CFD-Aided Approach
,”
J. Bionic Eng.
,
12
(
3
), pp.
406
417
.
3.
Zhang
,
K.
,
Zhu
,
K.
,
Liu
,
Y.
,
Zhang
,
H.
,
Gong
,
L.
,
Jiang
,
L.
,
Liu
,
L.
,
Lu
,
Z.
, and
Liu
,
B.
,
2021
, “
Novel Gene Rearrangement in the Mitochondrial Genome of Muraenesox cinereus and the Phylogenetic Relationship of Anguilliformes
,”
Sci. Rep.
,
11
(
1
), p.
2411
.
4.
Sun
,
X.
,
Ji
,
F.
,
Zhong
,
S.
, and
Huang
,
D.
,
2020
, “
Numerical Study of an Undulatory Airfoil With Different Leading Edge Shape in Power-Extraction Regime and Propulsive Regime
,”
Renew. Energ.
,
146
(
C
), pp.
986
996
.
5.
Fetherstonhaugh
,
S.
,
Shen
,
Q.
, and
Akanyeti
,
O.
,
2021
, “
Automatic Segmentation of Fish Midlines for Optimizing Robot Design
,”
Bioinspir. Biomim.
,
16
(
4
), p.
046005
.
6.
Najafi
,
S.
, and
Abtahi
,
B.
,
2022
, “
Numerical Simulation of Aquatic Animals Locomotion Using Unsteady Panel Method
,”
Ocean Eng.
,
244
, p.
110380
.
7.
Matta
,
A.
,
Pendar
,
H.
,
Battaglia
,
F.
, and
Bayandor
,
J.
,
2020
, “
Impact of Caudal Fin Shape on Thrust Production of a Thunniform Swimmer
,”
J. Bionic Eng.
,
17
(
2
), pp.
254
269
.
8.
Salazar
,
R.
, and
Abdelkefi
,
A.
,
2020
, “
Nonlinear Analysis of a Piezoelectric Energy Harvester in Body Undulatory Caudal Fin Aquatic Unmanned Vehicles
,”
Appl. Energ.
,
263
, p.
114627
.
9.
Hoar
,
W. S.
, and
Randall
,
D. J.
,
1978
,
Fish Physiology
,
Academic Press
,
New York
.
10.
Arastehfar
,
S.
,
Chew
,
C. M.
,
Jalalian
,
A.
,
Gunawan
,
G.
, and
Yeo
,
K. S.
,
2019
, “
A Relationship Between Sweep Angle of Flapping Pectoral Fins and Thrust Generation
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011014
.
11.
Zhang
,
R.
,
Shen
,
Z.
, and
Wang
,
Z.
,
2018
, “
Ostraciiform Underwater Robot With Segmented Caudal Fin
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2902
2909
.
12.
Mikami
,
M.
,
Ineno
,
T.
,
Thompson
,
A. W.
,
Braasch
,
I.
,
Ishiyama
,
M.
, and
Kawasaki
,
K.
,
2022
, “
Convergent Losses of SCPP Genes and Ganoid Scales Among Non-Teleost Actinopterygians
,”
Gene
,
811
, p.
146091
.
13.
Marcoux
,
T. M.
, and
Korsmeyer
,
K. E.
,
2019
, “
Energetics and Behavior of Coral Reef Fishes During Oscillatory Swimming in a Simulated Wave Surge
,”
J. Exp. Biol.
,
222
(
Pt 4
), pp.
1477
9145
.
14.
Yurugi
,
M.
,
Shimanokami
,
M.
,
Nagai
,
T.
,
Shintake
,
J.
, and
Ikemoto
,
Y.
,
2021
, “
Cartilage Structure Increases Swimming Efficiency of Underwater Robots
,”
Sci. Rep.
,
11
(
1
), p.
11288
.
15.
Datovo
,
A.
, and
Rizzato
,
P. P.
,
2018
, “
Evolution of the Facial Musculature in Basal Ray-Finned Fishes
,”
Front. Zool.
,
15
(
1
), p.
40
.
16.
Sprinkle
,
B.
,
Bale
,
R.
,
Bhalla
,
A. P. S.
,
Maclver
,
M. A.
, and
Patankar
,
N. A.
,
2016
, “
Hydrodynamic Optimality of Balistiform and Gymnotiform Locomotion
,”
Eur. J. Comput. Mech.
,
26
(
1-2
), pp.
31
43
.
17.
Barbini
,
S. A.
,
Sabadin
,
D. E.
, and
Lucifora
,
L. O.
,
2018
, “
Comparative Analysis of Feeding Habits and Dietary Niche Breadth in Skates: the Importance of Body Size, Snout Length, and Depth
,”
Rev. Fish Biol. Fisher.
,
28
(
3
), pp.
625
636
.
18.
Liu
,
F.
,
Lee
,
K.
, and
Yang
,
C.
,
2012
, “
Hydrodynamics of an Undulating Fin for a Wave-Like Locomotion System Design
,”
IEEE-ASME Trans. Mech.
,
17
(
3
), pp.
554
562
.
19.
Zou
,
T.
,
Jian
,
X.
,
Al-Tamimi
,
M.
,
Wu
,
X.
, and
Wu
,
J.
,
2024
, “
Development of a Low-Cost Soft Robot Fish With Biomimetic Swimming Performance
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061004
.
20.
Zhong
,
Y.
,
Song
,
J.
,
Yu
,
H.
, and
Du
,
R.
,
2018
, “
A Study on Kinematic Pattern of Fish Undulatory Locomotion Using a Robot Fish
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041013
.
21.
Chowdhury
,
A. R.
, and
Panda
,
S. K.
,
2015
, “
Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle
,”
Int. J. Adv. Rob. Syst.
,
12
(
5
), p.
52
.
22.
Nangia
,
N.
,
Bale
,
R.
,
Chen
,
N.
,
Hanna
,
Y.
, and
Patankar
,
N. A.
,
2017
, “
Optimal Specific Wavelength for Maximum Thrust Production in Undulatory Propulsion
,”
PLoS One
,
12
(
6
), p.
e0179727
.
23.
Cui
,
Z.
,
Yang
,
Z.
,
Shen
,
L.
, and
Jiang
,
H. Z.
,
2018
, “
Complex Modal Analysis of the Movements of Swimming Fish Propelled by Body and/or Caudal Fin
,”
Wave Motion
,
78
(
1
), pp.
83
97
.
24.
Li
,
L.
,
Li
,
G.
,
Li
,
R.
,
Xiao
,
Q.
, and
Liu
,
H.
,
2018
, “
Multi-Fin Kinematics and Hydrodynamics in Pufferfish Steady Swimming
,”
Ocean Eng.
,
158
, pp.
111
122
.
25.
Wang
,
S.
,
Han
,
Y.
,
Wu
,
Z.
, and
Huang
,
Z.
,
2024
, “
Numerical and Experimental Study on Caudal Fin Oscillation Mode in Hemispherical Space
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054504
.
26.
Rahman
,
M. M.
,
Sugimori
,
S.
,
Miki
,
H.
,
Yamamoto
,
R.
,
Sanada
,
Y.
, and
Toda
,
Y.
,
2013
, “
Braking Performance of a Biomimetic Squid-Like Underwater Robot
,”
J. Bionic Eng.
,
10
(
3
), pp.
265
273
.
27.
Wang
,
Y.
,
Tan
,
J.
, and
Zhao
,
D.
,
2015
, “
Design and Experiment on a Biomimetic Robotic Fish Inspired by Freshwater Stingray
,”
J. Bionic Eng.
,
12
(
2
), pp.
204
216
.
28.
Rahman
,
M. M.
,
Toda
,
Y.
, and
Miki
,
H.
,
2011
, “
Computational Study on a Squid-Like Underwater Robot With Two Undulating Side Fins
,”
J. Bionic Eng.
,
8
(
1
), pp.
25
32
.
29.
Shirgaonkar
,
A. A.
,
Curet
,
O. M.
,
Patankar
,
N. A.
, and
MacIver
,
M. A.
,
2008
, “
The Hydrodynamics of Ribbon-Fin Propulsion During Impulsive Motion
,”
J. Exp. Biol.
,
211
(
21
), pp.
3490
3503
.
30.
Ma
,
R.
,
Wang
,
Y.
,
Wang
,
R.
, and
Wang
,
S.
,
2019
, “
Development of a Propeller With Undulating Fins and Its Characteristics
,”
2019 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
Irkutsk, Russia
,
Aug. 4–9
, pp.
737
742
.
31.
Uddin
,
M. I.
, and
Curet
,
O. M.
,
2018
, “
Modeling and Control of a Bio-Inspired Underwater Vessel With Undulating-Fin Propulsion
,”
OCEANS 2018 MTS/IEEE
,
Charleston, SC
,
Oct. 22–25
, pp.
1
7
.
32.
Sefati
,
S.
,
Neveln
,
I.
,
MacIver
,
M. A.
,
Fortune
,
E. S.
, and
Cowan
,
N. J.
,
2012
, “
Counter-Propagating Waves Enhance Maneuverability and Stability: A Bio-Inspired Strategy for Robotic Ribbon-Fin Propulsion
,”
2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Rome, Italy
,
June 24–27
, pp.
1620
1625
.
33.
Liu
,
H.
, and
Curet
,
O.
,
2018
, “
Swimming Performance of a Bio-Inspired Robotic Vessel With Undulating Fin Propulsion
,”
Bioinspir. Biomim.
,
13
(
5
), p.
056006
.
34.
Neveln
,
I. D.
,
Bale
,
R.
, and
Bhalla
,
A. P. S.
,
2014
, “
Undulating Fins Produce Off-Axis Thrust and Flow Structures
,”
J. Exp. Biol.
,
217
(
2
), pp.
201
213
.
35.
Liu
,
F.
,
Yang
,
C.
, and
Lee
,
K.
,
2010
, “
Hydrodynamic Modeling of an Undulating Fin for Robotic Fish Design
,”
2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montreal, QC, Canada
,
July 6–9
, pp.
55
60
.
36.
Zhang
,
Y.
,
Jia
,
L.
,
Zhang
,
S.
,
Yang
,
J.
, and
Low
,
K. H.
,
2007
, “
Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor
,”
J. Bionic Eng.
,
4
(
1
), pp.
25
32
.
37.
Zhao
,
Z.
, and
Dou
,
L.
,
2019
, “
Computational Research on a Combined Undulating-Motion Pattern Considering Undulations of Both the Ribbon Fin and Fish Body
,”
Ocean Eng.
,
183
, pp.
1
10
.
38.
Low
,
K. H.
,
2009
, “
Modelling and Parametric Study of Modular Undulating Fin Rays for Fish Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
615
632
.
39.
Low
,
K. H.
,
2006
, “
Locomotion Consideration and Implementation of Robotic Fish With Modular Undulating Fins: Analysis and Experimental Study
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
2424
2429
.
40.
Hu
,
T.
,
Shen
,
L.
,
Lin
,
L.
, and
Xu
,
H.
,
2009
, “
Biological Inspirations, Kinematics Modeling, Mechanism Design and Experiments on an Undulating Robotic Fin Inspired by Gymnarchus Niloticus
,”
Mech. Mach. Theory
,
44
(
3
), pp.
633
645
.
41.
Zhou
,
H.
,
Hu
,
T.
,
Xie
,
H.
,
Zhang
,
D.
, and
Shen
,
L.
,
2010
, “
Computational Hydrodynamics and Statistical Modeling on Biologically Inspired Undulating Robotic Fins: A Two-Dimensional Study
,”
J. Bionic Eng.
,
7
(
1
), pp.
66
76
.
42.
Xie
,
H.
, and
Yin
,
D.
,
2013
, “
Dynamics and Initial Experiments of Bionic Undulating Fish Fin
,”
2013 Chinese Automation Congress
,
Changsha, China
,
Nov. 7–8
, pp.
643
650
.
43.
Zhou
,
H.
,
Hu
,
T.
,
Xie
,
H.
,
Zhang
,
D.
, and
Shen
,
L.
,
2010
, “
Computational and Experimental Study on Dynamic Behavior of Underwater Robots Propelled by Bionic Undulating Fins
,”
Sci. China Technol. Sci.
,
53
(
11
), pp.
2966
2971
.
44.
Xia
,
M.
,
Wang
,
H.
,
Yin
,
Q.
,
Shang
,
J.
,
Luo
,
Z.
, and
Zhu
,
Q.
,
2023
, “
Design and Mechanics of a Composite Wave-Driven Soft Robotic Fin for Biomimetic Amphibious Robot
,”
J. Bionic Eng.
,
20
(
3
), pp.
934
952
.
45.
Yin
,
Q.
,
Xia
,
M.
,
Luo
,
Z.
, and
Shang
,
J.
,
2022
, “
Adaptive Obstacle Climbing and Hydrodynamic Performance Analyses of the Amphibious Robot With Wheels and Flexible Undulating Fins
,”
Proc. Inst. Mech. Eng. C-J. Mech.
,
236
(
10
), pp.
5300
5317
.
46.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys. Mech.
,
59
(
8
), p.
684711
.
You do not currently have access to this content.