Abstract

The spatial cable-driven parallel robots (CDPRs) with low DOF (degree-of-freedom; n < 6) are like the physiological structure of bone and muscles, which are suitable for designing humanoid joints. Therefore, the type synthesis of the CDPR is of great interest for the design of new humanoid wrist joints. In this paper, we present a type synthesis of the coupled-input CDPRs to design a 3DOF wrist. Coupled input means that one actuator controls more than one cable. First, the Yamanouchi symbols of the coupled-input CDPRs are listed using the permutation group. In addition, two winding methods for the cable and the actuator are defined in the coupled-input CDPRs. Finally, a topology configuration of the coupled-input CDPR suitable for the 3DOF wrist model is determined based on a comparative analysis of the workspaces of a class of coupled-input CDPRs. It is shown that type synthesis of the coupled-input CDPRs is an effective way to innovate low DOF CDPRs.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Seriani
,
S.
,
Gallina
,
P.
, and
Wedler
,
A.
,
2016
, “
A Modular Cable Robot for Inspection and Light Manipulation on Celestial Bodies
,”
Acta Astronaut.
,
123
, pp.
145
153
.
2.
Seo
,
M.
,
Yoo
,
S.
,
Choi
,
M.
,
Oh
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2021
, “
Vibration Reduction of Flexible Rope-Driven Mobile Robot for Safe Façade Operation
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
1812
1819
.
3.
Bosscher
,
P.
,
Williams
,
R. L.
, II
,
Bryson
,
L. S.
, and
Castro-Lacouture
,
D.
,
2007
, “
Cable-Suspended Robotic Contour Crafting System
,”
Autom. Constr.
,
17
(
1
), pp.
45
55
.
4.
Chen
,
W.
,
Li
,
Z.
,
Cui
,
X.
,
Zhang
,
J.
, and
Bai
,
S.
,
2019
, “
Mechanical Design and Kinematic Modeling of a Cable-Driven arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters
,”
Sensors
,
19
(
20
), p.
4461
.
5.
Xiong
,
H.
,
Ma
,
T.
,
Zhang
,
L.
, and
Diao
,
X.
,
2020
, “
Comparison of End-to-End and Hybrid Deep Reinforcement Learning Strategies for Controlling Cable-Driven Parallel Robots
,”
Neurocomputing
,
377
, pp.
73
84
.
6.
Hamida
,
I. B.
,
Laribi
,
M. A.
,
Mlika
,
A.
,
Romdhane
,
L.
,
Zeghloul
,
S.
, and
Carbone
,
G.
,
2021
, “
Multi-Objective Optimal Design of a Cable Driven Parallel Robot for Rehabilitation Tasks
,”
Mech. Mach. Theory
,
156
, p.
104141
.
7.
Cui
,
X.
,
Chen
,
W.
,
Jin
,
X.
, and
Agrawal
,
S. K.
,
2016
, “
Design of a 7-DOF Cable-Driven Arm Exoskeleton (CAREX-7) and a Controller for Dexterous Motion Training or Assistance
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
161
172
.
8.
Chen
,
Q.
,
Chen
,
W.
,
Yang
,
G.
, and
Liu
,
R.
,
2013
, “
An Integrated Two-Level Self-Calibration Method for a Cable-Driven Humanoid arm
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
380
391
.
9.
Jiang
,
L.
,
Gao
,
B.
, and
Zhu
,
Z.
,
2017
, “
Design and Nonlinear Control of a 2-DOF Flexible Parallel Humanoid Arm Joint Robot
,”
Shock Vib.
,
2017
, pp.
1
14
.
10.
Nemoto
,
T.
,
Walter
,
J.
,
Bachmann
,
C.
,
Gerlich
,
M.
,
Reitelshöfer
,
S.
, and
Franke
,
J.
,
2022
, “
Highly Dynamic 2-DOF Cable-Driven Robotic Wrist Based on a Novel Topology
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
5727
5734
.
11.
Lee
,
G.
,
Hong
,
G. Y.
, and
Choi
,
Y.
,
2021
, “
Tendon-Driven Compliant Prosthetic Wrist Consisting of Three Rows Based on the Concept of Tensegrity Structure
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3956
3963
.
12.
Kim
,
Y. J.
,
Kim
,
J. I.
, and
Jang
,
W.
,
2018
, “
Quaternion Joint: Dexterous 3-DOF Joint Representing Quaternion Motion for High-Speed Safe Interaction
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
935
942
.
13.
Azizian
,
K.
,
2012
, “
Optimum-Synthesis Methods for Cable-Driven Parallel Mechanisms
,”
Ph.D. dissertation
,
Université Laval
,
Québec
.
14.
Kawamura
,
S.
,
Kino
,
H.
, and
Won
,
C.
,
2000
, “
High-Speed Manipulation by Using Parallel Wire-Driven Robots
,”
Robotica
,
18
(
1
), pp.
13
21
.
15.
Métillon
,
M.
,
Cardou
,
P.
,
Subrin
,
K.
,
Charron
,
C.
, and
Caro
,
S.
,
2021
, “
A Cable-Driven Parallel Robot With Full-Circle Mobile Platform Rotations
,”
ASME J. Mech. Rob.
,
13
(
3
), pp.
031017
.
16.
Zi
,
B.
,
Sun
,
H.
, and
Zhang
,
D.
,
2017
, “
Design, Analysis and Control of a Winding Hybrid-Driven Cable Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
48
, pp.
196
208
.
17.
Borgstrom
,
P. H.
,
Borgstrom
,
N. P.
,
Stealey
,
M. J.
,
Jordan
,
B.
,
Sukhatme
,
G. S.
,
Batalin
,
M. A.
, and
Kaiser
,
W. J.
,
2009
, “
Design and Implementation of NIMS3D, a 3-D Cabled Robot for Actuated Sensing Applications
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
325
339
.
18.
Horoub
,
M. M.
,
Hassan
,
M.
, and
Hawwa
,
M. A.
,
2017
, “
Workspace Analysis of a Gough-Stewart Type Cable Marine Platform Subjected to Harmonic Water Waves
,”
Mech. Mach. Theory
,
120
, pp.
314
325
.
19.
Alikhani
,
A.
,
Behzadipour
,
S.
,
Alasty
,
A.
, and
Vanini
,
S. A. S.
,
2011
, “
Design of a Large-Scale Cable-Driven Robot With Translational Motion
,”
Rob. Comput. Integr. Manuf.
,
27
(
2
), pp.
357
366
.
20.
Zhang
,
Z.
,
Shao
,
Z.
, and
Wang
,
L.
,
2020
, “
Optimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot
,”
Mech. Mach. Theory
,
145
, pp.
103693
.
21.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable-Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.
22.
Gouttefarde
,
M.
,
Merlet
,
J. P.
, and
Daney
,
D.
,
2007
, “
Wrench-Feasible Workspace of Parallel Cable-Driven Mechanisms
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1492
1497
.
23.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S. A.
,
2014
, “
Synthesis of Differentially Driven Planar Cable Parallel Manipulators
,”
IEEE Trans. Rob.
,
30
(
3
), pp.
619
630
.
24.
Khakpour
,
H.
,
Birglen
,
L.
, and
Tahan
,
S. A.
,
2015
, “
Analysis and Optimization of a New Differentially Driven Cable Parallel Robot
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
034503
.
25.
Zhang
,
Z.
,
Xie
,
G.
,
Shao
,
Z.
, and
Gosselin
,
C.
,
2022
, “
Kinematic Calibration of Cable-Driven Parallel Robots Considering the Pulley Kinematics
,”
Mech. Mach. Theory
,
169
, p.
104648
.
26.
Behzadipour
,
S.
,
Dekker
,
R.
,
Khajepour
,
A.
, and
Chan
,
E.
,
2003
, “
DeltaBot: A New Cable-Based Ultra High Speed Robot
,”
ASME International Mechanical Engineering Congress and Exposition
,
Washington, DC
,
Nov. 15–21
, Vol. 37130, pp.
533
537
.
27.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2004
, “
Design of Reduced DOF Parallel Cable-Based Robots
,”
Mech. Mach. Theory
,
39
(
10
), pp.
1051
1065
.
28.
Lam
,
K. S.
,
2015
, “Representations of the Symmetric Groups and the General Linear Groups, Young Diagrams,”
Topics in Contemporary Mathematical Physics
, 2nd ed.,
World Scientific Publishing Company
, pp.
201
218
.
29.
Bajaj
,
N. M.
,
Spiers
,
A. J.
, and
Dollar
,
A. M.
,
2019
, “
State of the Art in Artificial Wrists: A Review of Prosthetic and Robotic Wrist Design
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
261
277
.
30.
Zhang
,
Z.
,
Shao
,
Z.
,
You
,
Z.
,
Tang
,
X.
,
Zi
,
B.
,
Yang
,
G.
, and
Caro
,
S.
,
2022
, “
State-of-the-Art on Theories and Applications of Cable-Driven Parallel Robots
,”
Front. Mech. Eng.
,
17
(
3
), p.
37
.
31.
Kaplan
,
I. G.
,
2017
, “Appendix B,”
The Pauli Exclusion Principle: Origin, Verifications, and Applications
,
John Wiley and Sons
, pp.
161
168
.
You do not currently have access to this content.