Abstract

A theoretical framework for analyzing instantaneous kinematic properties regarding the shape of robotic mechanisms is proposed. Conventional research on kinematic analysis regarding the shape has been conducted with the primary goal of approximating a target shape. In contrast, this study does not set a target shape, and instantaneous kinematic properties regarding the shape formed by multiple reference links are analyzed. The properties provide information about the shape change that is easy to achieve and about the controllability of the shape. Furthermore, in contrast to the standard kinematic analysis of robot manipulators that assumes having a single hand link configuration with respect to the base link, the kinematic analysis in this study is free from this assumption. When analyzing instantaneous kinematic properties regarding the shape, it is crucial to decompose motions of reference links into rigid and nonrigid components. After formulating this decomposition, the Jacobian matrices that relate active joint velocities and nonrigid motions are defined. The indices of instantaneous kinematic properties regarding the shape are defined on the basis of the Jacobian matrices. Moreover, application examples using the defined indices are demonstrated.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Tsai
,
L. W.
,
1999
,
Robot Analysis
,
John Wiley & Sons
,
New York
.
2.
Smith
,
C.
,
Karayiannidis
,
Y.
,
Nalpantidis
,
L.
,
Gratal
,
X.
,
Qi
,
P.
,
Dimarogonas
,
D. V.
, and
Kragic
,
D.
,
2012
, “
Dual Arm Manipulation—A Survey
,”
Rob. Auton. Syst.
,
60
(
10
), pp.
1340
1353
.
3.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
,
1
(
1
), pp.
4
17
.
4.
Jacobsen
,
S.
,
Iversen
,
E.
,
Knutti
,
D.
,
Johnson
,
R.
, and
Biggers
,
K.
,
1986
, “
Design of the Utah/M.I.T. Dextrous Hand
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10, IEEE
, pp.
1520
1532
.
5.
Billard
,
A.
, and
Kragic
,
D.
,
2019
, “
Trends and Challenges in Robot Manipulation
,”
Science
,
364
(
6446
), p.
8414
.
6.
Song
,
S. M.
, and
Waldron
,
K. J.
,
1989
,
Machines that Walk: The Adaptive Suspension Vehicle
,
MIT Press
,
Cambridge, MA
.
7.
Hirose
,
M.
, and
Ogawa
,
K.
,
2007
, “
Honda Humanoid Robots Development
,”
Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci.
,
365
(
1850
), pp.
11
19
.
8.
Tutsoy
,
O.
,
Erol Barkana
,
D.
, and
Colak
,
S.
,
2017
, “
Learning to Balance an NAO Robot Using Reinforcement Learning With Symbolic Inverse Kinematic
,”
Trans. Inst. Meas. Control
,
39
(
11
), pp.
1735
1748
.
9.
Hirose
,
S.
, and
Yamada
,
H.
,
2009
, “
Snake-Like Robots [Tutorial]
,”
IEEE Robot. Autom. Mag.
,
16
(
1
), pp.
88
98
.
10.
Tachi
,
T.
,
2010
, “
Rigid-Foldable Thick Origami
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
,
Singapore
,
July 13–17
, pp.
253
264
.
11.
Zhu
,
Y.
,
Schenk
,
M.
, and
Filipov
,
E. T.
,
2022
, “
A Review on Origami Simulations: From Kinematics, to Mechanics, Toward Multiphysics
,”
Appl. Mech. Rev.
,
74
(
3
), p.
030801
.
12.
Kazerounian
,
K.
,
2004
, “
From Mechanisms and Robotics to Protein Conformation and Drug Design
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
40
45
.
13.
Chirikjian
,
G. S.
,
Kazerounian
,
K.
, and
Mavroidis
,
C.
,
2005
, “
Analysis and Design of Protein Based Nanodevices: Challenges and Opportunities in Mechanical Design
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
695
698
.
14.
Arikawa
,
K.
,
2016
, “
Structural Compliance Analysis and Internal Motion Properties of Proteins From a Robot Kinematics Perspective: Formulation of Basic Equations
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021028
.
15.
Dryden
,
I. L.
, and
Mardia
,
K. V.
,
2016
,
Statistical Shape Analysis With Application in R
, 2nd ed.),
John Wiley & Sons
,
West Sussex
.
16.
Veeraraghavan
,
A.
,
Chowdhury
,
A. R.
, and
Chellappa
,
R.
,
2004
, “
Role of Shape and Kinematics in Human Movement Analysis
,”
Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision Pattern Recognition
,
Washington, DC
,
June 27–July 2
, pp.
730
737
.
17.
Klingenberg
,
C. P.
,
2020
, “
Walking on Kendall’s Shape Space: Understanding Shape Spaces and Their Coordinate Systems
,”
Evol. Biol.
,
47
(
4
), pp.
334
352
.
18.
Murray
,
A. P.
,
Schmiedeler
,
J. P.
, and
Korte
,
B. M.
,
2008
, “
Kinematic Synthesis of Planar, Shape-Changing Rigid-Body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
.
19.
Persinger
,
J. A.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2009
, “
Synthesis of Planar Rigid-Body Mechanisms Approximating Shape Changes Defined by Closed Curves
,”
ASME J. Mech. Des.
,
131
(
7
), p.
071006
.
20.
Shamsudin
,
S. A.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Schmiedeler
,
J. P.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing, Rigid Body Mechanisms for Design Profiles With Significant Differences in Arc Length
,”
Mech. Mach. Theory
,
70
, pp.
425
440
.
21.
Usevitch
,
N.
,
Hammond
,
Z.
,
Follmer
,
S.
, and
Schwager
,
M.
,
2017
, “
Linear Actuator Robots: Differential Kinematics, Controllability, and Algorithms for Locomotion and Shape Morphing
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
5361
5367
.
22.
Nadon
,
F.
, and
Payeur
,
P.
,
2020
, “
Grasp Selection for In-hand Robotic Manipulation of Non-rigid Objects With Shape Control
,”
2020 IEEE International Systems Conference (SysCon)
,
Online
,
Aug. 24–27
, pp.
1
8
.
23.
Phocas
,
M. C.
,
Christoforou
,
E. G.
,
Theokli
,
C.
, and
Petrou
,
K.
,
2021
, “
Reconfigurable Linkage Structures and Photovoltaics Integration
,”
J. Build. Eng.
,
43
, p.
103201
.
24.
Wang
,
J.
,
Zhao
,
Y.
, and
Yu
,
J.
,
2021
, “
A Multi-Mode Spatial Variable Geometry Truss Manipulator for Morphing Wings
,”
Proceedings of the 5th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR2021)
,
Online
,
Aug. 12–14
, pp.
421
428
.
25.
Nakajima
,
M.
,
Fukumura
,
S.
,
Tanaka
,
K.
, and
Tanaka
,
M.
,
2022
, “
Local Body Shape Control of an Articulated Mobile Robot and an Application for Recovery From a Stuck State
,”
Adv. Robot.
,
36
(
10
), pp.
488
500
.
26.
de Jong
,
P. H.
,
Schwab
,
A.
,
Mirzaali
,
M. J.
, and
Zadpoor
,
A. A.
,
2023
, “
A Multibody Kinematic System Approach for the Design of Shape-Morphing Mechanism-Based Metamaterials
,”
Commun. Mater.
,
4
(
1
), p.
83
.
27.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
,
4
(
2
), pp.
3
9
.
28.
Chiacchio
,
P.
,
Chiaverini
,
S.
,
Sciavicco
,
L.
, and
Siciliano
,
B.
,
1991
, “
Global Task Space Manipulability Ellipsoids for Multiple-Arm Systems
,”
IEEE Trans. Rob. Autom.
,
7
(
5
), pp.
678
685
.
29.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
New York
.
30.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Manipulator Performance Measures—A Comprehensive Literature Survey
,”
J. Intell. Robot. Syst.
,
77
, pp.
547
570
.
31.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
You do not currently have access to this content.