Abstract

Tubular auxetic structures have wide-ranging applications including medical stents, collapsible energy absorbers, and novel fasteners. To accelerate the development in these areas, and open up new application directions, an expanded range of design and construction methods for auxetic tubes is required. In this study, we propose a new method to construct polygonal cross-sectional auxetic tubes using the principles of origami and kirigami. These tubes exhibit useful global auxetic behavior under axial extension, despite the individual polygon faces not being auxetic themselves. In general, a flat kirigami sheet cannot be simply folded into a polygonal tube since this creates kinematic incompatibilities along the polygon edges. We resolve this issue by replacing the edge folds with an origami mechanism consisting of a pair of triangular facets. This approach eliminates the incompatibilities at the edges while maintaining a connection between faces. The proposed edge connection also introduces additional control parameters for the tube kinematics: for example, introducing a kinematic limit on tube extension and enabling non-uniform behavior along the length of the tube. The rich kinematic behavior possible with polygonal cross-sectional kirigami tubes has potential applications ranging from soft robotics to energy-dissipating devices.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Tao
,
J.
,
Khosravi
,
H.
,
Deshpande
,
V.
, and
Li
,
S.
,
2023
, “
Engineering by Cuts: How Kirigami Principle Enables Unique Mechanical Properties and Functionalities
,”
Adv. Sci.
,
10
(
1
), p.
2204733
.
2.
Tang
,
Y.
, and
Yin
,
J.
,
2017
, “
Design of Cut Unit Geometry in Hierarchical Kirigami-Based Auxetic Metamaterials for High Stretchability and Compressibility
,”
Extreme Mech. Lett.
,
12
(Special Issue: Frontiers in Mechanical Metamaterials), pp.
77
85
.
3.
Shyu
,
T. C.
,
Damasceno
,
P. F.
,
Dodd
,
P. M.
,
Lamoureux
,
A.
,
Xu
,
L.
,
Shlian
,
M.
,
Shtein
,
M.
,
Glotzer
,
S. C.
, and
Kotov
,
N. A.
,
2015
, “
A Kirigami Approach to Engineering Elasticity in Nanocomposites Through Patterned Defects
,”
Nat. Mater.
,
14
(
8
), pp.
785
789
.
4.
Dias
,
M. A.
,
McCarron
,
M. P.
,
Rayneau-Kirkhope
,
D.
,
Hanakata
,
P. Z.
,
Campbell
,
D. K.
,
Park
,
H. S.
, and
Holmes
,
D. P.
,
2017
, “
Kirigami Actuators
,”
Soft Matter
,
13
(
48
), pp.
9087
9092
.
5.
Choi
,
G. P. T.
,
Dudte
,
L. H.
, and
Mahadevan
,
L.
,
2019
, “
Programming Shape Using Kirigami Tessellations
,”
Nat. Mater.
,
18
(
9
), pp.
999
1004
.
6.
Yang
,
Y.
,
Dias
,
M. A.
, and
Holmes
,
D. P.
,
2018
, “
Multistable Kirigami for Tunable Architected Materials
,”
Phys. Rev. Mater.
,
2
(
11
), pp.
1
6
.
7.
Blees
,
M. K.
,
Barnard
,
A. W.
,
Rose
,
P. A.
,
Roberts
,
S. P.
,
McGill
,
K. L.
,
Huang
,
P. Y.
,
Ruyack
,
A. R.
, et al.,
2015
, “
Graphene Kirigami
,”
Nature
,
524
(
7564
), pp.
204
207
.
8.
Li
,
Y.
,
Zhao
,
Y.
,
Chi
,
Y.
,
Hong
,
Y.
, and
Yin
,
J.
,
2021
, “
Shape-Morphing Materials and Structures for Energy-Efficient Building Envelopes
,”
Mater. Today Energy
,
22
(Special Issue: Energy in Sustainable Buildings), p.
100874
.
9.
Rafsanjani
,
A.
,
Jin
,
L.
,
Deng
,
B.
, and
Bertoldi
,
K.
,
2019
, “
Propagation of Pop Ups in Kirigami Shells
,”
Proc. Natl. Acad. Sci. U S A
,
116
(
17
), pp.
8200
8205
.
10.
Jin
,
L.
,
Forte
,
A. E.
,
Deng
,
B.
,
Rafsanjani
,
A.
, and
Bertoldi
,
K.
,
2020
, “
Kirigami-Inspired Inflatables With Programmable Shapes
,”
Adv. Mater.
,
32
(
33
), p.
2001863
.
11.
Choi
,
G. P. T.
,
Dudte
,
L. H.
, and
Mahadevan
,
L.
,
2021
, “
Compact Reconfigurable Kirigami
,”
Phys. Rev. Res.
,
3
(
4
), p.
043030
.
12.
Babaee
,
S.
,
Shi
,
Y.
,
Abbasalizadeh
,
S.
,
Tamang
,
S.
,
Hess
,
K.
,
Collins
,
J. E.
,
Ishida
,
K.
, et al.,
2021
, “
Kirigami-Inspired Stents for Sustained Local Delivery of Therapeutics
,”
Nat. Mater.
,
20
(
8
), pp.
1085
1092
.
13.
Zhang
,
W.
, and
Xu
,
J.
,
2022
, “
Ultra-Light Kirigami Lantern Chain for Superior Impact Mitigation
,”
Extreme Mech. Lett.
,
51
, p.
101602
.
14.
Wen
,
X.
,
Wang
,
D.
,
Chen
,
Z.
,
Yang
,
F.
,
Jiang
,
C.
, and
Liu
,
Y.
,
2023
, “
Dynamic Kirigami Structures for Wake Flow Control Behind a Circular Cylinder
,”
Phys. Fluids
,
35
(
1
), p.
011707
.
15.
Liu
,
J.
,
Yao
,
X.
,
Wang
,
Z.
,
Ye
,
J.
,
Luan
,
C.
,
He
,
Y.
,
Lin
,
H.
, and
Fu
,
J.
,
2021
, “
A Flexible Porous Chiral Auxetic Tracheal Stent With Ciliated Epithelium
,”
Acta Biomater.
,
124
, pp.
153
165
.
16.
Wu
,
W.
,
Song
,
X.
,
Liang
,
J.
,
Xia
,
R.
,
Qian
,
G.
, and
Fang
,
D.
,
2018
, “
Mechanical Properties of Anti-tetrachiral Auxetic Stents
,”
Compos. Struct.
,
185
, pp.
381
392
.
17.
Ali
,
M. N.
,
Busfield
,
J. J. C.
, and
Rehman
,
I. U.
,
2014
, “
Auxetic Oesophageal Stents: Structure and Mechanical Properties
,”
J. Mater. Sci.: Mater. Med.
,
25
(
2
), pp.
527
553
.
18.
Gatt
,
R.
,
Caruana-Gauci
,
R.
,
Attard
,
D.
,
Casha
,
A. R.
,
Wolak
,
W.
,
Dudek
,
K.
,
Mizzi
,
L.
, and
Grima
,
J. N.
,
2014
, “
On the Properties of Real Finite-Sized Planar and Tubular Stent-Like Auxetic Structures
,”
Phys. Stat. Sol. (b)
,
251
(
2
), pp.
321
327
.
19.
Schmitt
,
F.
,
Piccin
,
O.
,
Bayle
,
B.
,
Renaud
,
P.
, and
Barbé
,
L.
,
2020
, “
Inverted Honeycomb Cell as a Reinforcement Structure for Building Soft Pneumatic Linear Actuators
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011020
.
20.
Sedal
,
A.
,
Fisher
,
M.
,
Bishop-Moser
,
J.
,
Wineman
,
A.
, and
Kota
,
S.
,
2018
, “
Auxetic Sleeves for Soft Actuators With Kinematically Varied Surfaces
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
464
471
.
21.
Gao
,
Q.
,
Zhao
,
X.
,
Wang
,
C.
,
Wang
,
L.
, and
Ma
,
Z.
,
2018
, “
Multi-objective Crashworthiness Optimization for an Auxetic Cylindrical Structure Under Axial Impact Loading
,”
Mater. Des.
,
143
, pp.
120
130
.
22.
Lee
,
W.
,
Jeong
,
Y.
,
Yoo
,
J.
,
Huh
,
H.
,
Park
,
S.-J.
,
Park
,
S. H.
, and
Yoon
,
J.
,
2019
, “
Effect of Auxetic Structures on Crash Behavior of Cylindrical Tube
,”
Compos. Struct.
,
208
, pp.
836
846
.
23.
Ren
,
X.
,
Shen
,
J.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Auxetic Nail: Design and Experimental Study
,”
Compos. Struct.
,
184
, pp.
288
298
.
24.
Yao
,
Y.
,
Wang
,
L.
,
Li
,
J.
,
Tian
,
S.
,
Zhang
,
M.
, and
Fan
,
Y.
,
2020
, “
A Novel Auxetic Structure Based Bone Screw Design: Tensile Mechanical Characterization and Pullout Fixation Strength Evaluation
,”
Mater. Des.
,
188
, p.
108424
.
25.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
26.
Gatt
,
R.
,
Mizzi
,
L.
,
Azzopardi
,
J. I.
,
Azzopardi
,
K. M.
,
Attard
,
D.
,
Casha
,
A.
,
Briffa
,
J.
, and
Grima
,
J. N.
,
2015
, “
Hierarchical Auxetic Mechanical Metamaterials
,”
Sci. Rep.
,
5
(
1
), p.
8395
.
27.
Hur
,
J. M.
,
Seo
,
D.-S.
,
Kim
,
K.
,
Lee
,
J. K.
,
Lee
,
K. J.
,
Kim
,
Y. Y.
, and
Kim
,
D.-N.
,
2021
, “
Harnessing Distinct Deformation Modes of Auxetic Patterns for Stiffness Design of Tubular Structures
,”
Mater. Des.
,
198
, p.
109376
.
28.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
.
29.
Ren
,
X.
,
Shen
,
J.
,
Tran
,
P.
,
Ngo
,
T. D.
, and
Xie
,
Y. M.
,
2018
, “
Design and Characterisation of a Tuneable 3d Buckling-Induced Auxetic Metamaterial
,”
Mater. Des.
,
139
, pp.
336
342
.
30.
Luo
,
C.
,
Han
,
C. Z.
,
Zhang
,
X. Y.
,
Zhang
,
X. G.
,
Ren
,
X.
, and
Xie
,
Y. M.
,
2021
, “
Design, Manufacturing and Applications of Auxetic Tubular Structures: A Review
,”
Thin-Walled Struct.
,
163
, p.
107682
.
31.
Taniyama
,
H.
, and
Iwase
,
E.
,
2021
, “
Design of a Kirigami Structure With a Large Uniform Deformation Region
,”
Micromachines
,
12
(
1
), p.
76
.
32.
Dassault Systèmes Simulia Corp., Abaqus/CAE, 2023.
33.
Lamoureux
,
A.
,
Lee
,
K.
,
Shlian
,
M.
,
Forrest
,
S. R.
, and
Shtein
,
M.
,
2015
, “
Dynamic Kirigami Structures for Integrated Solar Tracking
,”
Nat. Commun.
,
6
(
1
), p.
8092
.
34.
Sadik
,
S.
,
Walker
,
M. G.
, and
Dias
,
M. A.
,
2022
, “
On Local Kirigami Mechanics II: Stretchable Creased Solutions
,”
J. Mech. Phys. Solids
,
161
, p.
104812
.
35.
Pauchard
,
L.
, and
Rica
,
S.
,
1998
, “
Contact and Compression of Elastic Spherical Shells: The Physics of a ‘Ping-Pong’ Ball
,”
Philos. Mag. B: Phys. Condens. Matter Stat. Mech. Electron. Opt. Magnet. Prop.
,
78
(
2
), pp.
225
233
.
36.
Pogorelov
,
A.
,
1988
,
Bending of Surfaces and Stability of Shells
,
American Mathematical Society
,
Providence, RI
.
37.
Palmer
,
A.
,
2002
,
Pogorelov’s Theory of Creases, and Point Loads on Thin Cylindrical Shells
,
Springer Dordrecht
, pp.
341
354
.
38.
Seffen
,
K.
,
2016
, “
Fundamental Conical Defects: The D-Cone, Its E-Cone, and Its P-Cone
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
94
(
1
), pp.
1
8
.
39.
Farmer
,
S.
, and
Calladine
,
C.
,
2005
, “
Geometry of ‘Developable Cones’
,”
Int. J. Mech. Sci.
,
47
(
4–5
), pp.
509
520
.
40.
Kotełko
,
M.
,
Grudziecki
,
J.
,
Ungureanu
,
V.
, and
Dubina
,
D.
,
2021
, “
Ultimate and Post-ultimate Behaviour of Thin-Walled Cold-Formed Steel Open-Section Members Under Eccentric Compression. Part I: Collapse Mechanisms Database (Theoretical Study)
,”
Thin-Walled Struct.
,
169
, p.
108366
.
41.
Murray
,
N.
, and
Khoo
,
P.
,
1981
, “
Some Basic Plastic Mechanisms in the Local Buckling of Thin-Walled Steel Structures
,”
Int. J. Mech. Sci.
,
23
(
12
), pp.
703
713
.
42.
Borkowski
,
U.
,
Grudziecki
,
J.
,
Kotełko
,
M.
,
Ungureanu
,
V.
, and
Dubina
,
D.
,
2022
, “
Ultimate and Post-ultimate Behaviour of Thin-Walled Cold-Formed Steel Open-Section Members Under Eccentric Compression. Part II: Experimental Study
,”
Thin-Walled Struct.
,
171
, p.
108802
.
43.
Walker
,
M. G.
, and
Seffen
,
K. A.
,
2018
, “
On the Shape of Bistable Creased Strips
,”
Thin-Walled Struct.
,
124
, pp.
538
545
.
You do not currently have access to this content.