Abstract

According to the fractionation concept and whether containing a multiple-joint, planar kinematic chains (KCs) are primarily categorized as non-fractionated simple-joint kinematic chains (NFS-KCs), fractionated simple-joint kinematic chains (FS-KCs), non-fractionated multiple-joint kinematic chains (NFM-KCs), and fractionated multiple-joint kinematic chains (FM-KCs). Currently, there is a noticeable research gap on the enumeration of FM-KCs, whereas comprehensive investigations have been conducted on the enumeration of the other three types of KCs. Aiming at addressing this research gap, the present study develops a heuristic approach for enumerating all planar 2-DOF FM-KCs. To this end, the composition of 2-DOF FM-KCs is initially analyzed to acquire their two basic classifications. Then, utilizing the characteristic graph generation methods for NFM-KCs and NFS-KCs, the combined characteristic graph and its corresponding combined characteristic number string of a 2-DOF FM-KC are created for solving the isomorphic problem in enumeration procedure. Finally, all non-isomorphic 2-DOF FM-KCs with 9, 11, 13, 15, and 17 links are enumerated, and the corresponding database is established.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yan
,
H. S.
,
1998
,
Creative Design of Mechanical Devices
,
Springer-Verlag
,
Singapore
.
2.
Meng
,
X.
,
Gao
,
F.
,
Wu
,
S.
, and
Ge
,
Q. J.
,
2014
, “
Type Synthesis of Parallel Robotic Mechanisms: Framework and Brief Review
,”
Mech. Mach. Theory
,
78
(
8
), pp.
177
186
.
3.
Damerla
,
R.
, and
Awtar
,
S.
,
2021
, “
Constraint-Based Analysis of Parallel Kinematic Articulated Wrist Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
035001
.
4.
Tsai
,
L. W.
,
2000
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton, FL
.
5.
Huang
,
P.
,
Ding
,
H.
,
Yang
,
W.
, and
Xu
,
G.
,
2021
, “
Connectivity Calculation-Based Automatic Synthesis of Planar Multi-Loop Mechanisms
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041004
.
6.
Cui
,
R.
,
Ye
,
Z.
,
Xu
,
S.
,
Wu
,
C.
, and
Sun
,
L.
,
2021
, “
Synthesis of Planar Kinematic Chains With Prismatic Pairs Based on a Similarity Recognition Algorithm
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
051001
.
7.
Davies
,
T. H.
, and
Crossley
,
F. R. E.
,
1966
, “
Structural Analysis of Plane Linkages by Franke’s Condensed Notation
,”
J. Mech.
,
1
(
2
), pp.
171
183
.
8.
Mruthyunjaya
,
T. S.
,
1979
, “
Structural Synthesis by Transformation of Binary Chains
,”
Mech. Mach. Theory
,
14
(
4
), pp.
221
231
.
9.
Mruthyunjaya
,
T. S.
,
1984
, “
A Computerized Methodology for Structural Synthesis of Kinematic Chains: Part 2-Application to Several Fully or Partially Known Cases
,”
Mech. Mach. Theory
,
19
(
6
), pp.
497
505
.
10.
Mruthyunjaya
,
T. S.
,
Balasubramanian
,
H. R.
, and
Vijayananda
,
K.
,
1992
, “
Computerized Structural Synthesis and Analysis of Eleven-Link, Two-Freedom Kinematic Chains
,”
Rev. Roum. Sci. Tech. Ser. Mec. Appl.
,
37
(
1
), pp.
91
105
.
11.
Yan
,
H. S.
, and
Hsu
,
C. H.
,
1988
, “
Contracted Graphs of Kinematic Chains With Multiple Joints
,”
Math. Comput. Model.
,
10
(
9
), pp.
681
695
.
12.
Yan
,
H. S.
, and
Hwang
,
Y. W.
,
1990
, “
Number Synthesis of Kinematic Chains Based on Permutation Groups
,”
Math. Comput. Model.
,
13
(
8
), pp.
29
42
.
13.
Hwang
,
W. M.
, and
Hwang
,
Y. W.
,
1991
, “
An Algorithm for the Detection of Degenerate Kinematic Chains
,”
Math. Comput. Model.
,
15
(
11
), pp.
9
15
.
14.
Hwang
,
W. M.
, and
Hwang
,
Y. W.
,
1992
, “
Computer-Aided Structural Synthesis of Planar Kinematic Chains With Simple Joints
,”
Mech. Mach. Theory
,
27
(
2
), pp.
189
199
.
15.
Hsu
,
C. H.
,
1992
, “
Enumeration of Basic Kinetic Chains With Simple and Multiple Joints
,”
J. Franklin Inst.
,
329
(
4
), pp.
775
789
.
16.
Lee
,
H. J.
, and
Yoon
,
Y. S.
,
1994
, “
Automatic Method for Enumeration of Complete Set of Kinematic Chains
,”
JSME Int. J.
,
37
(
4
), pp.
812
818
.
17.
Tischler
,
C. R.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
1995
, “
Kinematic Chains for Robot Hands-I. Orderly Number-Synthesis
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1193
1215
.
18.
Tischler
,
C. R.
,
Samuel
,
A. E.
, and
Hunt
,
K. H.
,
1995
, “
Kinematic Chains for Robot Hands-II. Kinematic Constraints, Classification, Connectivity, and Actuation
,”
Mech. Mach. Theory
,
30
(
8
), pp.
1217
1239
.
19.
Tuttle
,
E.
,
1996
, “
Generation of Planar Kinematic Chains
,”
Mech. Mach. Theory
,
31
(
6
), pp.
729
748
.
20.
Rao
,
A. C.
, and
Deshmukh
,
P. B.
,
2001
, “
Computer Aided Structural Synthesis of Planar Kinematic Chains Obviating the Test for Isomorphism
,”
Mech. Mach. Theory
,
36
(
4
), pp.
489
506
.
21.
Sunkari
,
R. P.
, and
Schmidt
,
L. C.
,
2006
, “
Structural Synthesis of Planar Kinematic Chains by Adapting a Mckay-Type Algorithm
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1021
1030
.
22.
Simoni
,
R.
,
Carboni
,
A. P.
, and
Martins
,
D.
,
2009
, “
Enumeration of Kinematic Chains and Mechanisms
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
223
(
4
), pp.
1017
1024
.
23.
Martins
,
D.
,
Simoni
,
R.
, and
Carboni
,
A. P.
,
2010
, “
Fractionation in Planar Kinematic Chains: Reconciling Enumeration Contradictions
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1628
1641
.
24.
Nie
,
S. H.
,
Liao
,
A. H.
,
Qiu
,
A. H.
, and
Gong
,
S. G.
,
2012
, “
Addition Method With 2 Links and 3 Pairs of Type Synthesis to Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
58
(
12
), pp.
179
191
.
25.
Ding
,
H. F.
,
Zhao
,
J.
, and
Huang
,
Z.
,
2010
, “
Unified Structural Synthesis of Planar Simple and Multiple Joint Kinematic Chains
,”
Mech. Mach. Theory
,
45
(
4
), pp.
555
568
.
26.
Ding
,
H.
,
Cao
,
W.
,
Kecskemethy
,
A.
, and
Huang
,
Z.
,
2012
, “
Complete Atlas Database of 2-DOF Kinematic Chains and Creative Design of Mechanisms
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031006
.
27.
Ding
,
H.
,
Yang
,
W.
,
Huang
,
P.
, and
Kecskemethy
,
A.
,
2013
, “
Automatic Structural Synthesis of Planar Multiple Joint Kinematic Chains
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091007
.
28.
Ding
,
H. F.
,
Zi
,
B.
,
Huang
,
P.
, and
Kecskeméthy
,
A.
,
2013
, “
The Whole Family of Kinematic Structures for Planar 2- and 3-DOF Fractionated Kinematic Chains
,”
Mech. Mach. Theory
,
70
(
12
), pp.
74
90
.
29.
Ding
,
H.
,
Huang
,
P.
,
Yang
,
W.
, and
Kecskemethy
,
A.
,
2016
, “
Automatic Generation of the Complete Set of Planar Kinematic Chains With up to Six Independent Loops and up to 19 Links
,”
Mech. Mach. Theory
,
96
(
2
), pp.
75
93
.
30.
Huang
,
P.
,
Liu
,
T. T.
,
Ding
,
H. F.
, and
Zhao
,
Y. Q.
,
2021
, “
Isomorphism Identification Algorithm and Database Generation for Planar 2-6 DOFs Fractionated Kinematic Chains Combined by Two or Three Non-Fractionated Kinematic Chains
,”
Mech. Mach. Theory
,
166
(
12
), p.
104520
.
31.
Sun
,
L.
,
Ye
,
Z. Z.
,
Cui
,
R. J.
,
Huang
,
X. W.
, and
Wu
,
C. Y.
,
2022
, “
Eliminating Isomorphism Identification Method for Synthesizing Nonfractionated Kinematic Chains Based on Graph Similarity
,”
Mech. Mach. Theory
,
167
(
1
), p.
104500
.
32.
Mruthyunjaya
,
T. S.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
33.
Simoni
,
R.
,
Carboni
,
A. P.
,
Simas
,
H.
, and
Martins
,
D.
,
2011
, “
Enumeration of Kinematic Chains and Mechanisms Review
,”
Proceedings of the 13th World Congress in Mechanism and Machine Science
,
Guanajuato, Mexico
,
June 19–25
, pp. A23_427(1)–A23_427(9).
34.
Yan
,
H. S.
, and
Chiu
,
Y. T.
,
2015
, “
On the Number Synthesis of Kinematic Chains
,”
Mech. Mach. Theory
,
89
(
7
), pp.
128
144
.
35.
Yang
,
W.
,
Ding
,
H.
, and
Kecskemethy
,
A.
,
2022
, “
Structural Synthesis Towards Intelligent Design of Plane Mechanisms: Current Status and Future Research Trend
,”
Mech. Mach. Theory
,
171
(
5
), p.
104715
.
36.
Dong
,
K. J.
,
Li
,
D. L.
, and
Kong
,
X. W.
,
2022
, “
Representation of Planar Kinematic Chains With Multiple Joints Based on a Modified Graph and Isomorphism Identification
,”
Mech. Mach. Theory
,
172
(
6
), p.
104793
.
37.
Sun
,
L.
,
Ye
,
Z.
,
Cui
,
R.
,
Yang
,
W.
, and
Wu
,
C.
,
2020
, “
Compound Topological Invariant Based Method for Detecting Isomorphism in Planar Kinematic Chains
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054504
.
38.
Pan
,
W.
, and
Li
,
R.
,
2024
, “
The Equivalent Mechanical Model of Topological Graphs and the Isomorphism Identification of Kinematic Chains
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071014
.
39.
Huang
,
P.
,
Ding
,
H. F.
,
Yang
,
W. J.
, and
Kecskeméthy
,
A.
,
2017
, “
An Automatic Method for the Connectivity Calculation in Planar Closed Kinematic Chains
,”
Mech. Mach. Theory
,
109
(
3
), pp.
195
219
.
40.
Huang
,
P.
,
Li
,
C. S.
,
Ding
,
H. F.
,
Chen
,
Z. M.
, and
Zhao
,
Y. Q.
,
2024
, “
Structural Synthesis and Optimization of the Hydraulic Loader Working Device
,”
J. Mech. Eng.
,
60
(
1
), pp.
220
234
.
41.
He
,
P. R.
,
Zhang
,
W. J.
, and
Li
,
Q.
,
2002
, “
Eigenvalues and Eigenvectors Information of Graph and Their Validity in Identification of Graph Isomorphism
,”
Proceedings of the ASME 2002 Design Engineering Technical Conferences and Computers and Information Engineering Conference, DETC2002/MECH-342147
,
Montreal, Canada
,
Sept 29–Oct. 2
, pp.
421
428
.
42.
Prasad Raju Pathapati
,
V. V. N. R.
, and
Rao
,
A. C.
,
2002
, “
A New Technique Based on Loops to Investigate Displacement Isomorphism in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
662
675
.
43.
Yang
,
W. J.
, and
Ding
,
H. F.
,
2018
, “
The Perimeter Loop-Based Method for the Automatic Isomorphism Detection in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
140
(
12
), p.
123302
.
You do not currently have access to this content.