Abstract

Collisions at high-speed can severely damage robots with non-backdrivable drivetrains. Adding an overload clutch in series can improve the robot’s collision tolerance without compromising its high dynamic performance. This paper aims at determining the speed above which overload clutches are required in a two-link manipulator arm. Furthermore, the optimal clutch topology as function of the impact velocity is investigated. Third, it is evaluated if adding clutches can lower the impact force on the arm. Finally, the maximum speed is identified below which impact-aware robot control is possible. The latter requires that none of the clutches decouple during an intentional collision with the environment. These answers are obtained through collision simulations and experiments with a custom build two-link arm. It was found that adding a clutch reduces the torque experienced by the drivetrain by an order of magnitude and below the limit momentary peak torque of the strain wave gears that are used. Adding a clutch to the elbow joint of the two-link arm was effective in protecting the shoulder as well if the impact occurred at the tool center point. With respect to a rigid elbow joint, the clutched elbow joint reduced the collision force at the tool by only 8%. To demonstrate that the arm is impact-aware, a box of 8 kg is approached, impacted, and pushed at 1 m/s without decoupling a clutch, nor damaging the robot’s hardware.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Guo
,
X.
,
Zhang
,
W.
,
Liu
,
H.
,
Yu
,
Z.
,
Zhang
,
W.
, and
Conus
,
W.
,
2015
, “
A Torque Limiter for Safe Joint Applied to Humanoid Robots Against Falling Damage
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Zhuhai, China
,
Dec. 6–9
, pp.
2454
2459
.
2.
Kang
,
R.
,
Liu
,
H.
,
Meng
,
F.
,
Zhang
,
R.
,
Ma
,
X.
,
Liu
,
B.
,
Ming
,
A.
, and
Huang
,
Q.
,
2018
, “
An Overload Protector Inspired by Joint Dislocation and Reduction for Shoulder of Humanoid Robot
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Kuala Lumpur, Malaysia
,
Dec. 12–15
, pp.
2019
2024
.
3.
Ostyn
,
F.
,
Lefebvre
,
T.
,
Vanderborght
,
B.
, and
Crevecoeur
,
G.
,
2021
, “
Overload Clutch Design for Collision Tolerant High-Speed Industrial Robots
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
863
870
.
5.
Yaskawa HC20DTP
. https://www.motoman.com. Accessed August 26, 2022.
6.
Comau Racer-5-0.80 Cobot
. https://www.comau.com. Accessed August 26, 2022.
7.
van Steen
,
J. J.
,
van de Wouw
,
N.
, and
Saccon
,
A.
,
2022
, “
Robot Control for Simultaneous Impact Tasks Via Quadratic Programming-Based Reference Spreading
”. pp.
3865
3872
.
8.
Baek
,
S.
,
Moon
,
H.
,
Choi
,
H.
, and
Koo
,
J.
,
2021
, “
A New CAM-Follower Safety Joint Mechanism Design Based on Variable-Length Four-Bar Linkage for Robot Safety
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011004
.
9.
Tsagarakis
,
N. G.
,
Laffranchi
,
M.
,
Vanderborght
,
B.
, and
Caldwell
,
D. G.
,
2009
, “
A Compact Soft Actuator Unit for Small Scale Human Friendly Robots
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
4356
4362
.
10.
She
,
Y.
,
Su
,
H.-J.
,
Meng
,
D.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
‘Design and Modeling of a Compliant Link for Inherently Safe Corobots’
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011001
.
11.
Vanderborght
,
B.
,
Albu-Schaeffer
,
A.
,
Bicchi
,
A.
,
Burdet
,
E.
,
Caldwell
,
D.
,
Carloni
,
R.
, and
Catalano
,
M.
,
2013
, “
‘Variable Impedance Actuators: A Review’
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1601
1614
.
12.
Song
,
S.
,
She
,
Y.
,
Wang
,
J.
, and
Su
,
H.-J.
,
2020
, “
Toward Tradeoff Between Impact Force Reduction and Maximum Safe Speed: Dynamic Parameter Optimization of Variable Stiffness Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054503
.
13.
Park
,
J.-J.
,
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2009
, “
Safe Robot Arm With Safe Joint Mechanism Using Nonlinear Spring System for Collision Safety
”. pp.
3371
3376
.
14.
Lee
,
W.
,
Choi
,
J.
, and
Kang
,
S.
,
2009
, “
Spring-Clutch: A Safe Torque Limiter Based on a Spring and Cam Mechanism With the Ability to Reinitialize Its Position
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
5140
5145
.
15.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2011
, “
Series Clutch Actuators for Safe Physical Human-Robot Interaction
,” 2011 IEEE International Conference on Robotics and Automation, pp.
5401
5406
.
16.
Kashiri
,
N.
,
Laffranchi
,
M.
,
Caldwell
,
D.
, and
Tsagarakis
,
N.
,
2016
, “
Dynamics and Control of an Anthropomorphic Compliant Arm Equipped With Friction Clutches
,”
IEEE/ASME Trans. Mechatron.
,
21
(
2
), pp.
694
707
.
17.
Niu
,
Z.
,
Awad
,
M. I.
,
Shah
,
U. H.
,
Boushaki
,
M. N.
,
Zweiri
,
Y.
,
Seneviratne
,
L.
, and
Hussain
,
I.
,
2022
, “
Towards Safe Physical Human-Robot Interaction by Exploring the Rapid Stiffness Switching Feature of Discrete Variable Stiffness Actuation
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
8084
80910
.
18.
Ono
,
Y.
,
Shimamoto
,
K.
,
Nogawa
,
T.
,
Masuta
,
H.
, and
Lim
,
H.-O.
,
2013
, “
Passive Collision Force Suppression Mechanism for Robot Manipulator
”. pp.
280
285
.
19.
Seriani
,
S.
,
Gallina
,
P.
,
Scalera
,
L.
, and
Lughi
,
V.
,
2018
, “
Development of N-DOF Preloaded Structures for Impact Mitigation in Cobots
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051009
.
20.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2012
, “
Performance Indices for Collaborative Serial Robots With Optimally Adjusted Series Clutch Actuators
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021002
.
21.
Zhang
,
M.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2016
, “Design and Static Analysis of Elastic Force and Torque Limiting Devices for Safe Physical Human-Robot Interaction”. p. V05BT07A062.
22.
Zheng
,
Y.-F.
, and
Hemani
,
H.
,
1985
, “
Mathematical Modeling of a Robot Collision With Its Environment
,”
J. Rob. Syst.
,
2
(
3
), pp.
289
307
.
23.
Mills
,
J.
, and
Nguyen
,
C.
,
1992
, “
Robotic Manipulator Collisions: Modeling and Simulation
,”
Trans. ASME
,
114
(
4
), pp.
650
659
.
24.
Aouaj
,
I.
,
Padois
,
V.
, and
Saccon
,
A.
,
2021
, “
Predicting the Post-Impact Velocity of a Robotic Arm Via Rigid Multibody Models: An Experimental Study
”. pp.
2264
2271
.
25.
Wang
,
Y.
,
Dehio
,
N.
, and
Kheddar
,
A.
,
2022
, “
‘On Inverse Inertia Matrix and Contact-Force Model for Robotic Manipulators at Normal Impacts’
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
3648
3655
.
26.
Park
,
J.-J.
, and
Song
,
J.-B.
,
2009
Collision Analysis and Evaluation of Collision Safety for Service Robots Working in Human Environments
”. pp.
1
6
.
27.
Haddadin
,
S.
,
Krieger
,
K.
,
Mansfeld
,
N.
, and
Albu-Schäffer
,
A.
,
2012
On Impact Decoupling Properties of Elastic Robots and Time Optimal Velocity Maximization on Joint Level
”. pp.
1
8
.
28.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2015
, “
‘A Comparison of the Effectiveness of Design Approaches for Human-Friendly Robots’
,”
ASME J. Mech. Des.
,
137
(
8
), pp.
1
8
.
29.
Ostyn
,
F.
,
Vanderborght
,
B.
, and
Crevecoeur
,
G.
,
2022
, “
Overload Clutch With Integrated Torque Sensing and Decoupling Detection for Collision Tolerant Hybrid High-Speed Industrial Cobots
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
12601
12607
.
30.
Kim
,
J.
,
Cho
,
C.
,
Song
,
J.
,
Kim
,
Y.
, and
Kyung
,
J.
,
2022
, “
Collision Detection Algorithm to Distinguish Between Intended Contact and Unexpected Collision
,”
Adv. Rob.
,
26
(
16
), pp.
1
16
.
31.
Spong
,
M.
,
Hutchingson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
Wiley
,
New York
.
32.
Albu-Schäffer
,
A.
,
2001
, “Regelung Von Robotern Mit Elastischen Gelenken am Beispiel der DLR-Leichtbauarme”.
You do not currently have access to this content.