Abstract

A compliant constant-force mechanism (CCFM) is a specific type of compliant mechanism that serves as a passive force regulation device. When subjected to a load, it undergoes deformation, resulting in an almost consistent output force regardless of changes in input displacement. Traditional methods used to design CCFMs typically rely on either stiffness combination or parametric optimization based on existing design configurations. To enable the direct synthesis of CCFMs according to desired boundary conditions, this study proposes a systematic topology optimization method. This method includes a new morphology-based scheme designed to ensure the connectivity of the topological results, thereby achieving this objective. Using this approach, a CCFM suitable for end effector applications is designed and manufactured through 3D printing. Four of these CCFMs are then utilized to create an innovative compliant constant-force end effector for robotic operations on uneven surfaces. The experimental results demonstrate that the presented design achieves output force modulation through elastic deformation, eliminating the need for additional sensors and controllers to regulate the output force. The presented design can be mounted on a robotic arm to provide overload protection and maintain a consistent force output during operation when encountering irregular and uneven surfaces.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wang
,
Q.
,
Wang
,
W.
,
Zheng
,
L.
, and
Yun
,
C.
,
2021
, “
Force Control-Based Vibration Suppression in Robotic Grinding of Large Thin-Wall Shells
,”
Rob. Comput.-Integr. Manuf.
,
67
, p.
102031
.
2.
Ding
,
B.
,
Zhao
,
J.
, and
Li
,
Y.
,
2021
, “
Design of a Spatial Constant-Force End-Effector for Polishing/Deburring Operations
,”
Int. J. Adv. Manuf. Technol.
,
116
(
11–12
), pp.
3507
3515
.
3.
Kakinuma
,
Y.
,
Ogawa
,
S.
, and
Koto
,
L.
,
2022
, “
Robot Polishing Control With an Active End Effector Based on Macro-Micro Mechanism and the Extended Preston’s Law
,”
CIRP Ann.
,
71
(
1
), pp.
341
344
.
4.
Su
,
J.
,
Meng
,
Y.
,
Wang
,
L.
, and
Yang
,
X.
,
2021
, “
Learning to Assemble Noncylindrical Parts Using Trajectory Learning and Force Tracking
,”
IEEE ASME Trans. Mechatron.
,
27
(
5
), pp.
3132
3143
.
5.
Zhu
,
M.
,
Dai
,
J.
, and
Feng
,
Y.
,
2024
, “
Robust Grasping of a Variable Stiffness Soft Gripper in High-Speed Motion Based on Reinforcement Learning
,”
Soft Rob.
,
11
(
1
), pp.
95
104
.
6.
Luo
,
A.
,
Pande
,
S. S.
, and
Turner
,
K. T.
,
2022
, “
Versatile Adhesion-Based Gripping Via an Unstructured Variable Stiffness Membrane
,”
Soft Rob.
,
9
(
6
), pp.
1177
1185
.
7.
Hu
,
H.
, et al
,
2024
, “
Robust Adaptive Control of a Bimanual 3T1R Parallel Robot With Gray-Box-Model and Prescribed Performance Function
,”
IEEE/ASME Trans. Mechatron.
,
29
(
1
), pp.
466
475
.
8.
Zeng
,
G.
, and
Hemami
,
A.
,
1997
, “
An Overview of Robot Force Control
,”
Robotica
,
15
(
5
), pp.
473
482
.
9.
Katsura
,
S.
,
Matsumoto
,
Y.
, and
Ohnishi
,
K.
,
2006
, “
Analysis and Experimental Validation of Force Bandwidth for Force Control
,”
IEEE Trans. Ind. Electron.
,
53
(
3
), pp.
922
928
.
10.
Katsura
,
S.
,
Matsumoto
,
Y.
, and
Ohnishi
,
K.
,
2007
, “
Modeling of Force Sensing and Validation of Disturbance Observer for Force Control
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
530
538
.
11.
Ma
,
H.
,
Guo
,
J.
,
Wu
,
J.
,
Xiong
,
Z.
, and
Lee
,
K.-M.
,
2019
, “
An Active Control Method for Chatter Suppression in Thin Plate Turning
,”
IEEE Trans. Ind. Inform.
,
16
(
3
), pp.
1742
1753
.
12.
Wan
,
H.
,
Chen
,
S.
,
Zhang
,
C.
,
Chen
,
C.-Y.
, and
Yang
,
G.
,
2023
, “
Compliant Control of Flexible Joint by Dual-Disturbance Observer and Predictive Feedforward
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
1890
1899
.
13.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
14.
Ling
,
J.
,
Ye
,
T.
,
Feng
,
Z.
,
Zhu
,
Y.
,
Li
,
Y.
, and
Xiao
,
X.
,
2022
, “
A Survey on Synthesis of Compliant Constant Force/Torque Mechanisms
,”
Mech. Mach. Theory
,
176
, p.
104970
.
15.
Lan
,
C.-C.
,
Yang
,
S.-A.
, and
Wu
,
Y.-S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
.
16.
Yan
,
G.
,
Zou
,
H. X.
,
Wang
,
S.
,
Zhao
,
L. C.
,
Gao
,
Q. H.
,
Tan
,
T.
, and
Zhang
,
W. M.
,
2020
, “
Large Stroke Quasi-Zero Stiffness Vibration Isolator Using Three-Link Mechanism
,”
J. Sound Vib.
,
478
, p.
115344
.
17.
Zhang
,
C.
,
He
,
J.
,
Zhou
,
G.
,
Wang
,
K.
,
Xu
,
D.
, and
Zhou
,
J.
,
2023
, “
Compliant Quasi-Zero-Stiffness Isolator for Low-Frequency Torsional Vibration Isolation
,”
Mech. Mach. Theory
,
181
, p.
105213
.
18.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Development of a New 3-DOF Active-Type Constant-Force Compliant Parallel Stage
,”
Mech. Mach. Theory
,
140
, pp.
654
665
.
19.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1843
1850
.
20.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
,
2003
, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
,
38
(
12
), pp.
1469
1487
.
21.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
.
22.
Wei
,
Y.
, and
Xu
,
Q.
,
2022
, “
Design of a New Passive End-Effector Based on Constant-Force Mechanism for Robotic Polishing
,”
Rob. Comput.-Integr. Manuf.
,
74
, p.
102278
.
23.
Miao
,
Y.
, and
Zheng
,
J.
,
2020
, “
Optimization Design of Compliant Constant-Force Mechanism for Apple Picking Actuator
,”
Comput. Electron. Agric.
,
170
, p.
105232
.
24.
Liu
,
C.-H.
,
Chung
,
F.-M.
, and
Ho
,
Y.-P.
,
2021
, “
Topology Optimization for Design of a 3D-Printed Constant-Force Compliant Finger
,”
IEEE ASME Trans. Mechatron.
,
26
(
4
), pp.
1828
1836
.
25.
Ye
,
T.
,
Ling
,
J.
,
Kang
,
X.
,
Feng
,
Z.
, and
Xiao
,
X.
,
2021
, “
A Novel Two-Stage Constant Force Compliant Microgripper
,”
ASME J. Mech. Des.
,
143
(
5
), p.
053302
.
26.
Gan
,
J.
,
Xu
,
H.
,
Zhang
,
X.
, and
Ding
,
H.
,
2022
, “
Design of a Compliant Adjustable Constant-Force Gripper Based on Circular Beams
,”
Mech. Mach. Theory
,
173
, p.
104843
.
27.
Liu
,
C.-H.
,
Hsu
,
M.-C.
,
Chen
,
T.-L.
, and
Chen
,
Y.
,
2020
, “
Optimal Design of a Compliant Constant-Force Mechanism to Deliver a Nearly Constant Output Force Over a Range of Input Displacements
,”
Soft Rob.
,
7
(
6
), pp.
758
769
.
28.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
,
2006
, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1101
1112
.
29.
Chen
,
Z.
,
Rahimi Nohooji
,
H.
, and
Chew
,
C. M.
,
2022
, “
Development of Topology Optimized Bending-Twisting Soft Finger
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051003
.
30.
Liu
,
C.-H.
,
Chen
,
L.-J.
,
Chi
,
J.-C.
, and
Wu
,
J.-Y.
,
2022
, “
Topology Optimization Design and Experiment of a Soft Pneumatic Bending Actuator for Grasping Applications
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
2086
2093
.
31.
Chen
,
S.
,
Chen
,
F.
,
Cao
,
Z.
,
Wang
,
Y.
,
Miao
,
Y.
,
Gu
,
G.
, and
Zhu
,
X.
,
2021
, “
Topology Optimization of Skeleton-Reinforced Soft Pneumatic Actuators for Desired Motions
,”
IEEE ASME Trans. Mechatron.
,
26
(
4
), pp.
1745
1753
.
32.
Chen
,
F.
,
Xu
,
W.
,
Zhang
,
H.
,
Wang
,
Y.
,
Cao
,
J.
,
Wang
,
M. Y.
,
Ren
,
H.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2018
, “
Topology Optimized Design, Fabrication, and Characterization of a Soft Cable-Driven Gripper
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2463
2470
.
33.
Liu
,
C.-H.
,
Chung
,
F.-M.
,
Chen
,
Y.
,
Chiu
,
C.-H.
, and
Chen
,
T.-L.
,
2020
, “
Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper
,”
IEEE ASME Trans. Mechatron.
,
25
(
4
), pp.
1830
1840
.
34.
Liang
,
R.
,
Xu
,
G.
,
Li
,
M.
,
He
,
B.
, and
Khalique
,
U.
,
2021
, “
Fusing Topology Optimization and Pseudo-Rigid-Body Method for the Development of a Finger Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1721
1728
.
35.
Liu
,
C.-H.
,
Chiu
,
C.-H.
,
Chen
,
T.-L.
,
Pai
,
T.-Y.
,
Hsu
,
M.-C.
, and
Chen
,
Y.
,
2018
, “
Topology Optimization and Prototype of a Three-Dimensional Printed Compliant Finger for Grasping Vulnerable Objects With Size and Shape Variations
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
044502
.
36.
Liu
,
C.-H.
,
Yang
,
S.-Y.
, and
Shih
,
Y.-C.
,
2023
, “
Optimal Design of a Highly Self-Adaptive Gripper With Multi-phalange Compliant Fingers for Grasping Irregularly Shaped Objects
,”
IEEE Rob. Autom. Lett.
,
8
(
11
), pp.
7026
7033
.
37.
Chi
,
I.-T.
,
Chanthasopeephan
,
T.
, and
Wang
,
D.-A.
,
2022
, “
Design of a Parallel Gripper Based on Topology Synthesis and Evolutionary Optimization
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021008
.
38.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
767
784
.
39.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
New York
.
40.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
41.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4
), pp.
401
424
.
42.
Wang
,
S.
,
Tai
,
K.
, and
Wang
,
M.
,
2006
, “
An Enhanced Genetic Algorithm for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
1
), pp.
18
44
.
43.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
422
441
.
44.
Yeoh
,
O. H.
,
1993
, “
Some Forms of the Strain Energy Function for Rubber
,”
Rubber Chem. Technol.
,
66
(
5
), pp.
754
771
.
45.
Liu
,
C.-H.
,
Chen
,
Y.
, and
Yang
,
S.-Y.
,
2022
, “
Topology Optimization and Prototype of a Multimaterial-Like Compliant Finger by Varying the Infill Density in 3D Printing
,”
Soft Rob.
,
9
(
5
), pp.
837
849
.
You do not currently have access to this content.