Abstract

A tensegrity-based robot is a locomotive robot that operates on the principle of tensegrity, allowing it to change its shape by adjusting its internal prestress. Tensegrity-based robots can be categorized into different types based on their shape, with the spherical tensegrity-based robot garnering the most attention. However, existing designs for spherical tensegrity-based robots tend to be relatively simple and lack standardized criteria for evaluating their performance. This paper proposes an optimization approach using the force density method to design new spherical regular tensegrity configurations. This is achieved by parameterizing the topology and configuration of the structure, taking into account structural symmetry and the even distribution of internal forces. The proposed approach generates not only classical tensegrities but also novel configurations suitable for locomotive robots. To preliminarily evaluate the suitability of classical tensegrities and novel tensegrities to be used as a rolling robot, a set of performance indexes, including inner space, compactability, prestress evenness, gait repeatability, tilt stability ratio, stride length, and path efficiency, are proposed. The proposed indexes can be quickly determined based on the geometry of the tensegrity and thus are useful in the conceptual selection of the spherical tensegrities for rolling robots. They are used to evaluate a set of six spherical tensegrities. Numerical simulations are carried out to verify the feasibility of geometry-based approximating the gait-dependent indexes. Through the evaluation, a novel spherical tensegrity consisting of 15 struts and 60 tendons is identified as a promising candidate for rolling robots.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Pugh
,
A.
,
1976
,
An Introduction to Tensegrity
,
University of California Press
,
Oakland, CA
.
2.
Al Sabouni-Zawadzka
,
A.
, and
Gilewski
,
W.
,
2018
, “
Inherent Properties of Smart Tensegrity Structures
,”
Appl. Sci.
,
8
(
5
), p.
787
.
3.
Peng
,
H.
,
Li
,
F.
, and
Kan
,
Z.
,
2020
, “
A Novel Distributed Model Predictive Control Method Based on a Substructuring Technique for Smart Tensegrity Structure Vibrations
,”
J. Sound Vib.
,
471
, p.
115171
.
4.
Sychterz
,
A. C.
, and
Smith
,
I. F. C.
,
2020
, “
Damage Mitigation of Near-Full–Scale Deployable Tensegrity Structure Through Behavior Biomimetics
,”
J. Struct. Eng.
,
146
(
1
), p.
04019181
.
5.
Rieffel
,
J.
, and
Mouret
,
J.-B.
,
2018
, “
Adaptive and Resilient Soft Tensegrity Robots
,”
Soft Robot.
,
5
(
3
), pp.
318
329
.
6.
Zheng
,
Y.
,
Li
,
Y.
,
Lu
,
Y.
,
Wang
,
M.
,
Xu
,
X.
,
Zhou
,
C.
, and
Luo
,
Y.
,
2021
, “
Robustness Evaluation for Rolling Gaits of a Six-Strut Tensegrity Robot
,”
Int. J. Adv. Rob. Syst.
,
18
(
1
), p.
172988142199363
.
7.
Mirletz
,
B. T.
,
Bhandal
,
P.
,
Adams
,
R. D.
,
Agogino
,
A. K.
,
Quinn
,
R. D.
, and
SunSpiral
,
V.
,
2015
, “
Goal-Directed CPG-Based Control for Tensegrity Spines With Many Degrees of Freedom Traversing Irregular Terrain
,”
Soft Robot.
,
2
(
4
), pp.
165
176
.
8.
Yang
,
Q.
,
Liu
,
X.
,
Yu
,
Z.
,
Lian
,
B.
, and
Sun
,
T.
,
2024
, “
Kinematic Modeling and Optimization of a Clustered Tensegrity Mobile Robot
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061011
.
9.
Paul
,
C.
,
Roberts
,
J. W.
,
Lipson
,
H.
, and
Valero Cuevas
,
F. J.
,
2005
, “
Gait Production in a Tensegrity Based Robot
,”
12th International Conference on Advanced Robotics
,
Seattle, WA
,
July 17–20
, pp.
216
222
.
10.
Paul
,
C.
,
Valero-Cuevas
,
F. J.
, and
Lipson
,
H.
,
2006
, “
Design and Control of Tensegrity Robots for Locomotion
,”
IEEE Trans. Robot.
,
22
(
5
), pp.
944
957
.
11.
Shibata
,
M.
,
Saijyo
,
F.
, and
Hirai
,
S.
,
2009
, “
Crawling by Body Deformation of Tensegrity Structure Robots
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
4375
4380
.
12.
Cai
,
H.
,
Wang
,
M.
,
Xu
,
X.
, and
Luo
,
Y.
,
2020
, “
A General Model for Both Shape Control and Locomotion Control of Tensegrity Systems
,”
Front. Built Environ.
,
6
, p.
98
.
13.
Zheng
,
Y.
,
Cai
,
H.
,
Wang
,
M.
,
Yao
,
J.
,
Xu
,
X.
,
Zhou
,
C.
, and
Luo
,
Y.
,
2020
, “
Rolling Gaits of a Strut-Actuated Six-Strut Spherical Tensegrity
,”
Int. J. Adv. Rob. Syst.
,
17
(
5
), p.
172988142096090
.
14.
Xu
,
X.
,
Wang
,
M.
,
Zheng
,
Y.
,
Zhou
,
C.
, and
Luo
,
Y.
,
2023
, “
An Improved Numerical Model for Locomotive Tensegrity Systems Based on Vector Form Intrinsic Finite Element
,”
Int. J. Adv. Rob. Syst.
,
20
(
2
), p.
172988062311624
.
15.
Shibata
,
M.
, and
Hirai
,
S.
, “
Moving Strategy of Tensegrity Robots With Semiregular Polyhedral Body
,”
13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
,
Nagoya, Japan
,
Aug. 31–Sept. 3
, pp.
359
366
.
16.
Luo
,
A.
, and
Liu
,
H.
,
2017
, “
Analysis for Feasibility of the Method for Bars Driving the Ball Tensegrity Robot
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051010
.
17.
Kim
,
K.
,
Moon
,
D.
,
Bin
,
J. Y.
, and
Agogino
,
A. M.
,
2017
, “
Design of a Spherical Tensegrity Robot for Dynamic Locomotion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) / Workshop on Machine Learning Methods for High-Level Cognitive Capabilities in Robotics
,
Vancouver, Canada
,
Sept. 24–28
, pp.
450
455
.
18.
Baines
,
R. L.
,
Booth
,
J. W.
, and
Kramer-Bottiglio
,
R.
,
2020
, “
Rolling Soft Membrane-Driven Tensegrity Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6567
6574
.
19.
Agogino
,
A.
, and
SunSpiral
,
V.
,
2013
,
Super Ball Bot—Structures for Planetary Landing and Exploration
,
NASA Ames Research Center
,
Mountain View, CA
.
20.
Chen
,
L.-H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Zhu
,
E. L.
,
Fountain
,
K.
, et al
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Robot.
,
9
(
2
), p.
025001
.
21.
Schek
,
H.-J.
,
1974
, “
The Force Density Method for Form Finding and Computation of General Networks
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
1
), pp.
115
134
.
22.
Wang
,
Y.
,
Xu
,
X.
, and
Luo
,
Y.
,
2021
, “
Form-Finding of Tensegrity Structures via Rank Minimization of Force Density Matrix
,”
Eng. Struct.
,
227
, p.
111419
.
23.
Ali
,
N. B. H.
,
Rhode-Barbarigos
,
L.
, and
Smith
,
I. F. C.
,
2011
, “
Analysis of Clustered Tensegrity Structures Using a Modified Dynamic Relaxation Algorithm
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
637
647
.
24.
Pagitz
,
M.
, and
Tur
,
J. M. M.
,
2009
, “
Finite Element Based Form-Finding Algorithm for Tensegrity Structures
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3235
3240
.
25.
Gasparini
,
D.
,
Klinka
,
K. K.
, and
Arcaro
,
V. F.
,
2011
, “
A Finite Element for Form-Finding and Static Analysis of Tensegrity Structures
,”
J. Mech. Mater. Struct.
,
6
(
9
), pp.
1239
1253
.
26.
Paul
,
C.
,
Lipson
,
H.
, and
Cuevas
,
F. J. V.
,
2005
, “Evolutionary Form-Finding of Tensegrity Structures,”
GECCO 2005: Genetic and Evolutionary Computation Conference
,
H. G.
Beyer
, ed., Vols.
1–2
,
Assoc Computing Machinery
,
New York
, pp.
3
10
.
27.
Xu
,
X.
, and
Luo
,
Y.
,
2010
, “
Form-Finding of Nonregular Tensegrities Using a Genetic Algorithm
,”
Mech. Res. Commun.
,
37
(
1
), pp.
85
91
.
28.
Masic
,
M.
,
Skelton
,
R. E.
, and
Gill
,
P. E.
,
2006
, “
Optimization of Tensegrity Structures
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4687
4703
.
29.
Cai
,
J.
, and
Feng
,
J.
,
2015
, “
Form-Finding of Tensegrity Structures Using an Optimization Method
,”
Eng. Struct.
,
104
, pp.
126
132
.
30.
Yuan
,
S.
, and
Yang
,
B.
,
2019
, “
The Fixed Nodal Position Method for Form Finding of High-Precision Lightweight Truss Structures
,”
Int. J. Solids Struct.
,
161
, pp.
82
95
.
31.
Yuan
,
S.
, and
Zhu
,
W.
,
2021
, “
Optimal Self-Stress Determination of Tensegrity Structures
,”
Eng. Struct.
,
238
, p.
112003
.
32.
Snelson
,
K. D.
,
1965
, “
Continuous Tension, Discontinuous Compression Structures
,” U.S. Patent No. US3169611.
33.
Kaveh
,
A.
,
1995
,
Structural Mechanics: Graph and Matrix Methods
,
Research Studies Press ; Wiley
,
Somerset, UK
.
34.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2007
, “
Stability Conditions for Tensegrity Structures
,”
Int. J. Solids Struct.
,
44
(
11–12
), pp.
3875
3886
.
35.
Calladine
,
C. R.
, and
Pellegrino
,
S.
,
1991
, “
First-Order Infinitesimal Mechanisms
,”
Int. J. Solids Struct.
,
27
(
4
), pp.
505
515
.
36.
Chiang
,
N.-Y.
, and
Zavala
,
V. M.
,
2016
, “
An Inertia-Free Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Comput. Optim. Appl.
,
64
(
2
), pp.
327
354
.
37.
Xu
,
X.
, and
Luo
,
Y.
,
2011
, “
Multistable Tensegrity Structures
,”
J. Struct. Eng.
,
137
(
1
), pp.
117
123
.
You do not currently have access to this content.