Abstract

Continuum robots have continuous structures and inherent compliance, which can be used for accessing unstructured and confined space in many fields, such as minimally invasive surgery and aero-engine in-situ inspection. A novel cable-driven continuum robot connected by unique offset cross revolute joints is proposed in this paper, which has excellent bending capacity and appropriate torsional stiffness compared with continuum robots connected by revolute joints and spherical joints, respectively. Furthermore, the kinematic modeling and analysis are carried out. The mappings among robot's actuator space, joint space and task space are established step by step. Particularly, an improved inverse kinematics algorithm is proposed by combining the constant curvature method with the numerical iterative method. This combined inverse kinematics algorithm can effectively reduce the error of approximate solution derived by the traditional constant curvature method. Numerical simulations are conducted to verify the proposed algorithm and analyze workspace of the continuum robot. Finally, experimental prototype of the robot is built to verify its excellent bending capacity and the correctness of the proposed kinematic model.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ding
,
L.
,
Niu
,
L. Z.
,
Su
,
Y.
,
Yang
,
H. G.
,
Liu
,
G. J.
,
Gao
,
H. B.
, and
Deng
,
Z. Q.
,
2022
, “
Dynamic Finite Element Modeling and Simulation of Soft Robots
,”
Chin. J. Mech. Eng.
,
35
(
1
), pp.
1
11
.
2.
Liu
,
Y. J.
, and
Ben-Tzvi
,
P.
,
2021
, “
A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031014
.
3.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), pp.
1
25
.
4.
Zhou
,
P.
,
Yao
,
J. T.
,
Wei
,
C. J.
,
Zhang
,
S.
,
Zhang
,
H. Y.
, and
Qi
,
S. P.
,
2022
, “
Design and Kinematic of a Dexterous Bioinspired Elephant Trunk Robot with Variable Diameter
,”
Bioinspir. Biomim.
,
17
(
4
), pp.
1
6
.
5.
Sitler
,
J. L.
, and
Wang
,
L.
,
2022
, “
A Modular Open-Source Continuum Manipulator for Underwater Remotely Operated Vehicles
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060906
.
6.
Zhang
,
T. C.
,
Ping
,
Z. Y.
, and
Zuo
,
S. Y.
,
2021
, “
Miniature Continuum Manipulator with Three Degrees-of-Freedom Force Sensing for Retinal Microsurgery
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041002
. .
7.
Dong
,
X.
,
Axinte
,
D.
,
Palmer
,
D.
,
Cobos
,
S.
,
Raffles
,
M.
,
Rabani
,
A.
, and
Kell
,
J.
,
2017
, “
Development of a Slender Continuum Robotic System for On-Wing Inspection/Repair of Gas Turbine Engines
,”
Rob. Comput. Integr. Manuf.
,
44
, pp.
218
229
.
8.
Dong
,
X.
,
Wang
,
M. F.
,
Mohammad
,
A.
,
Ba
,
W. M.
,
Russo
,
M.
,
Norton
,
A.
,
Kell
,
J.
, and
Axinte
,
D.
,
2022
, “
Continuum Robots Collaborate for Safe Manipulation of High-Temperature Flame to Enable Repairs in Challenging Environments
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
4217
4220
.
9.
Wang
,
M. F.
,
Dong
,
X.
,
Ba
,
W. M.
,
Mohammad
,
A.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, “
Design, Modelling and Validation of a Novel Extra Slender Continuum Robot for In-Situ Inspection and Repair in Aeroengine
,”
Rob. Comput. Integr. Manuf.
,
67
, pp.
1
20
.
10.
Xu
,
W. F.
,
Liu
,
T. L.
, and
Li
,
Y. M.
,
2018
, “
Kinematics, Dynamics, and Control of a Cable-Driven Hyper-Redundant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1693
1704
.
11.
Halverson
,
P. A.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Tension-Based Multi-Stable Compliant Rolling-Contact Elements
,”
Mech. Mach. Theory
,
45
(
2
), pp.
147
156
.
12.
Sahoo
,
A. R.
, and
Chakraborty
,
P.
,
2022
, “
A Study on Position Control of a Continuum Arm Using MAML (Model-Agnostic Meta-Learning) for Adapting Different Loading Conditions
,”
IEEE Access
,
10
, pp.
14980
14992
.
13.
Zhang
,
J.
,
Shi
,
J. H.
,
Huang
,
J. H.
,
Wu
,
Q. H.
,
Zhao
,
Y. W.
,
Yang
,
J. Z.
,
Rajabi
,
H.
,
Wu
,
Z. G.
,
Peng
,
H. J.
, and
Wu
,
J. N.
,
2023
, “
In Situ Reconfigurable Continuum Robot with Varying Curvature Enabled by Programmable Tensegrity Building Blocks
,”
Adv. Intell. Syst.
,
5
(
7
), pp.
1
10
.
14.
Liu
,
B.
,
Huang
,
L.
,
Yin
,
L. R.
,
Zhang
,
P.
, and
Yi
,
K. F.
,
2022
, “
Design and Analysis of a Tendon-Driven Snake-Arm Robot Based on a Spherical Magnets
,”
Trans. Can. Soc. Mech. Eng.
,
46
(
1
), pp.
68
76
.
15.
Li
,
G. X.
,
Yu
,
J. J.
,
Dong
,
D. L.
,
Pan
,
J.
,
Wu
,
H. R.
,
Cao
,
S. G.
,
Pei
,
X.
,
Huang
,
X. D.
, and
Yi
,
J. Q.
,
2022
, “
Systematic Design of a 3-DOF Dual-Segment Continuum Robot for in Situ Maintenance in Nuclear Power Plants
,”
Machines
,
10
(
7
), pp.
1
20
.
16.
Yang
,
J. Z.
,
Peng
,
H. J.
,
Zhou
,
W. Y.
,
Zhang
,
J.
, and
Wu
,
Z. G.
,
2021
, “
A Modular Approach for Dynamic Modeling of Multisegment Continuum Robots
,”
Mech. Mach. Theory
,
165
, pp.
1
22
.
17.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2016
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021010
.
18.
Barrientos-Diez
,
J.
,
Russo
,
M.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2023
, “
Asymmetric Continuum Robots
,”
IEEE Robot. Autom. Lett.
,
8
(
3
), pp.
1279
1286
.
19.
Chitalia
,
Y.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
985
995
.
20.
Sefati
,
S.
,
Hegeman
,
R.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2021
, “
A Dexterous Robotic System for Autonomous Debridement of Osteolytic Bone Lesions in Confined Spaces: Human Cadaver Studies
,”
IEEE Trans. Rob.
,
38
(
2
), pp.
1213
1229
.
21.
Yan
,
J. Y.
,
Chen
,
J. B.
,
Chen
,
J. F.
,
Yan
,
W. Q.
,
Ding
,
Q. P.
,
Yan
,
K.
,
Du
,
J. X.
,
Lam
,
C. P.
,
Wong
,
G. K. C.
, and
Cheng
,
S. S.
,
2022
, “
A Continuum Robotic Cannula with Tip Following Capability and Distal Dexterity for Intracerebral Hemorrhage Evacuation
,”
IEEE Trans. Biomed. Eng.
,
69
(
9
), pp.
2958
2969
.
22.
Wei
,
X. Y.
,
Zhang
,
Y. X.
,
Ju
,
F.
,
Guo
,
H.
,
Chen
,
B.
, and
Wu
,
H. T.
,
2021
, “
Design and Analysis of a Continuum Robot for Transnasal Skull Base Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
17
(
6
), pp.
1
16
.
23.
Chitalia
,
Y.
,
Jeong
,
S.
,
Yamamoto
,
K. K.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2021
, “
Modeling and Control of a 2-DoF Meso-Scale Continuum Robotic Tool for Pediatric Neurosurgery
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
520
531
.
24.
Zeng
,
W. H.
,
Yan
,
J. Y.
,
Yan
,
K.
,
Huang
,
X.
,
Wang
,
X. F.
, and
Cheng
,
S. S.
,
2021
, “
Modeling a Symmetrically-Notched Continuum Neurosurgical Robot with Non-Constant Curvature and Superelastic Property
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
6489
6496
.
25.
Liu
,
S. C.
,
Liu
,
J. H.
,
Zou
,
K. H.
,
Wang
,
X. C.
,
Fang
,
Z. G.
,
Yi
,
J.
, and
Wang
,
Z.
,
2022
, “
A Six Degrees-of-Freedom Soft Robotic Joint with Tilt-Arranged Origami Actuator
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060912
. .
26.
Zhuang
,
Z. M.
,
Zhang
,
Z.
,
Guan
,
Y. T.
,
Wei
,
W.
,
Li
,
M.
,
Tang
,
Z.
,
Kang
,
R. J.
,
Song
,
Z. B.
, and
Dai
,
J. S.
,
2022
, “
Design and Control of SLPM-Based Extensible Continuum Arm
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061003
.
27.
Ji
,
D.
,
Kang
,
T. H.
,
Shim
,
S.
,
Lee
,
S.
, and
Hong
,
J.
,
2019
, “
Wire-Driven Flexible Manipulator with Constrained Spherical Joints for Minimally Invasive Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
8
), pp.
1365
1377
.
28.
Ashwin
,
K. P.
,
Mahapatra
,
S. K.
, and
Ghosal
,
A.
,
2021
, “
Profile and Contact Force Estimation of Cable-Driven Continuum Robots in Presence of Obstacles
,”
Mech. Mach. Theory
,
164
, pp.
1
12
.
29.
Dalvand
,
M. M.
,
Nahavandi
,
S.
, and
Howe
,
R. D.
,
2022
, “
General Forward Kinematics for Tendon-Driven Continuum Robots
,”
IEEE Access
,
10
, pp.
60330
60340
.
30.
Bishop
,
C.
,
Russo
,
M.
,
Dong
,
X.
, and
Axinte
,
D.
,
2022
, “
A Novel Underactuated Continuum Robot with Shape Memory Alloy Clutches
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5339
5350
.
31.
Peyron
,
Q.
,
Boehler
,
Q.
,
Rougeot
,
P.
,
Roux
,
P.
,
Nelson
,
B. J.
,
Andreff
,
N.
,
Rabenorosoa
,
K.
, and
Renaud
,
P.
,
2022
, “
Magnetic Concentric Tube Robots: Introduction and Analysis
,”
Int. J. Rob. Res.
,
41
(
4
), pp.
418
440
.
32.
Yang
,
J. K.
,
Ren
,
C. W.
,
Yang
,
C. H.
,
Wang
,
Y. Y.
,
Wan
,
S. M.
, and
Kang
,
R. G.
,
2021
, “
Design of a Flexible Capture Mechanism Inspired by Sea Anemone for Non-Cooperative Targets
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
13
.
33.
Zhao
,
Q. X.
,
Lai
,
J. W.
,
Hu
,
X. B.
, and
Chu
,
H. K.
,
2022
, “
Dual-Segment Continuum Robot with Continuous Rotational Motion Along the Deformable Backbone
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4994
5004
.
34.
Merrad
,
A.
,
Amouri
,
A.
,
Cherfia
,
A.
, and
Djeffal
,
S.
,
2022
, “
A Reliable Algorithm for Obtaining All-Inclusive Inverse Kinematics' Solutions and Redundancy Resolution of Continuum Robots
,”
Arabian J. Sci. Eng.
,
48
(
3
), pp.
3351
3366
.
35.
Wu
,
H. R.
,
Yu
,
J. J.
,
Pan
,
J.
,
Li
,
G. X.
, and
Pei
,
X.
,
2022
, “
CRRIK: A Fast Heuristic Algorithm for the Inverse Kinematics of Continuum Robot
,”
J. Intell. Rob. Syst.
,
105
(
3
), pp.
1
21
.
36.
Lu
,
J. J.
,
Du
,
F. X.
,
Li
,
Y. B.
,
Lei
,
Y. Q.
,
Zhang
,
T.
, and
Zhang
,
G.
,
2021
, “
A Novel Inverse Kinematics Algorithm Using the Kepler Oval for Continuum Robots
,”
Appl. Math. Model
,
93
, pp.
206
225
.
37.
Mishra
,
M. K.
,
Samantaray
,
A. K.
, and
Chakraborty
,
G.
,
2022
, “
Joint-Space Kinematic Control of a Bionic Continuum Manipulator in Real-Time by Using Hybrid Approach
,”
IEEE Access
,
10
, pp.
47031
47050
.
38.
Neppalli
,
S.
,
Csencsits
,
M. A.
,
Jones
,
B. A.
, and
Walker
,
I. D.
,
2009
, “
Closed-Form Inverse Kinematics for Continuum Manipulators
,”
Adv. Rob.
,
23
(
15
), pp.
2077
2091
.
39.
Roy
,
R.
,
Wang
,
L.
, and
Simaan
,
N.
,
2017
, “
Modeling and Estimation of Friction, Extension, and Coupling Effects in Multisegment Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
22
(
2
), pp.
909
920
.
40.
Alqumsan
,
A. A.
,
Khoo
,
S.
, and
Norton
,
M.
,
2019
, “
Robust Control of Continuum Robots Using Cosserat Rod Theory
,”
Mech. Mach. Theory
,
131
, pp.
48
61
.
41.
Du
,
Z. J.
,
Yang
,
W. L.
, and
Dong
,
W.
,
2015
, “
Kinematics Modeling of a Notched Continuum Manipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041017
.
42.
Li
,
Z.
, and
Du
,
R. X.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot Regular Paper
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
1
11
.
43.
Pu
,
Z.
,
Du
,
D.
,
Wang
,
K. M.
,
Liu
,
G.
,
Zhang
,
D. Q.
,
Zhang
,
H. Y.
,
Xi
,
R.
,
Wang
,
X. B.
, and
Chang
,
B. H.
,
2022
, “
Study on the NiTi Shape Memory Alloys In-Situ Synthesized by Dual-Wire-Feed Electron Beam Additive Manufacturing
,”
Addit. Manuf.
,
56
, pp.
1
14
.
44.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
You do not currently have access to this content.