Abstract

Flexure pivots, which are widely used for precision mechanisms, generally have the drawback of presenting parasitic shifts accompanying their rotation. The known solutions for canceling these undesirable parasitic translations usually induce a loss in radial stiffness, a reduction of the angular stroke, and nonlinear moment–angle characteristics. This article introduces a novel family of kinematic structures based on coupled n-RRR planar parallel mechanisms, which presents exact zero parasitic shifts while alleviating the drawbacks of some known pivoting structures. Based on this invention, three symmetrical architectures have been designed and implemented as flexure-based pivots. The performance of the newly introduced pivots has been compared with two known planar flexure pivots having theoretically zero parasitic shift via Finite Element models and experiments performed on plastic mockups. The results show that the newly introduced flexure pivots are an order of magnitude radially stiffer than the considered pivots from the state-of-the-art while having equivalent angular strokes. To experimentally evaluate the parasitic shift of the novel pivots, one of the architectures was manufactured in titanium alloy using wire-cut electrical discharge machining. This prototype exhibits a parasitic shift under 1.5 µm over a rotation stroke of ±15 deg, validating the near-zero parasitic shift properties of the presented designs. These advantages are key to applications such as mechanical time bases, surgical robotics, or optomechanical mechanisms.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Marković
,
K.
, and
Zelenika
,
S.
,
2015
, “
Characterization of Cross-Spring Pivots for Micropositioning Applications
,”
SPIE Microtechnologies
,
Barcelona, Spain
,
May 4–6
, p.
951727
.
2.
Tissot-Daguette
,
L.
,
Smreczak
,
M.
,
Baur
,
C.
, and
Henein
,
S.
,
2021
, “
Load Cell With Adjustable Stiffness Based on a Preloaded T-Shaped Flexure Pivot
,”
Proceedings of the 21st International Conference of the European Society for Precision Engineering and Nanotechnology
,
Copenhagen, Denmark
,
June 7–10
, pp.
217
220
.
3.
Smreczak
,
M.
,
Tissot-Daguette
,
L.
,
Thalmann
,
E.
,
Baur
,
C.
, and
Henein
,
S.
,
2022
, “
A Load Cell With Adjustable Stiffness and Zero Offset Tuning Dedicated to Electrical Micro- and Nanoprobing
,”
Precis. Eng.
,
76
, pp.
208
225
.
4.
Xu
,
Q.
,
2013
, “
Design and Fabrication of a Novel Compliant Rotary Nanopositioning Stage
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, pp.
1415
1420
.
5.
Tissot-Daguette
,
L.
,
Baur
,
C.
,
Bertholds
,
A.
,
Llosas
,
P.
, and
Henein
,
S.
,
2021
, “
Design and Modelling of a Compliant Constant-Force Surgical Tool for Objective Assessment of Ossicular Chain Mobility
,”
2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)
,
Orlando, FL
,
June 20–24
,
IEEE, pp. 1299–1302
.
6.
Zanaty
,
M.
,
Fussinger
,
T.
,
Rogg
,
A.
,
Lovera
,
A.
,
Lambelet
,
D.
,
Vardi
,
I.
,
Wolfensberger
,
T. J.
,
Baur
,
C.
, and
Henein
,
S.
,
2019
, “
Programmable Multistable Mechanisms for Safe Surgical Puncturing
,”
ASME J. Med. Devices
,
13
(
2
), pp.
021002
.
7.
Thomas
,
T. L.
,
Kalpathy Venkiteswaran
,
V.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2021
, “
Surgical Applications of Compliant Mechanisms: A Review
,”
ASME J. Mech. Rob.
,
13
(
2
) p.
020801
.
8.
Seelig
,
F. A.
,
1968
, “
Flexural Pivots for Space Applications
,”
Proceedings of the 3rd Aerospace Mechanisms Symposium
,
California Institute of Technology
,
May 23–24
.
9.
Spanoudakis
,
P.
,
Kiener
,
L.
,
Cosandier
,
F.
,
Schwab
,
P.
,
Giriens
,
L.
,
Kruis
,
J.
,
Grivon
,
D.
,
Psoni
,
G.
,
Vrettos
,
C.
, and
Bencheikh
,
N.
,
2019
, “
Large Angle Flexure Pivot Development for Future Science Payloads for Space Applications
,”
MATEC Web Conf.
,
304
, p.
07016
.
10.
Fowler
,
R.
,
Maselli
,
A.
,
Pluimers
,
P.
,
Magleby
,
S.
, and
Howell
,
L.
,
2014
, “
Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge
,”
Mech. Mach. Theory
,
82
, pp.
203
217
.
11.
Thalmann
,
E.
,
2020
, “
Flexure Pivot Oscillators for Mechanical Watches
,” Ph.D. thesis, EPFL, Lausanne, Switzerland.
12.
Robuschi
,
N.
,
Braghin
,
F.
,
Corigliano
,
A.
,
Ghisi
,
A.
, and
Tasora
,
A.
,
2017
, “
On the Dynamics of a High Frequency Oscillator for Mechanical Watches
,”
Mech. Mach. Theory
,
117
, pp.
276
293
.
13.
Schneegans
,
H.
,
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Shaking Force Balancing of a 2-DOF Isotropic Horological Oscillator
,”
Precis. Eng.
,
72
, pp.
502
520
.
14.
Thalmann
,
E.
,
Kahrobaiyan
,
M.
,
Vardi
,
I.
, and
Henein
,
S.
,
2020
, “
Flexure Pivot Oscillator With Intrinsically Tuned Isochronism
,”
ASME J. Mech. Des.
,
142
(
7
), p.
075001
.
15.
Wittrick
,
W.
,
1951
, “
The Properties of Crossed Flexure Pivots, and the Influence of the Point at Which the Strips Cross
,”
Aeronaut. Q.
,
2
(
4
), pp.
272
292
.
16.
Pei
,
X.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Hu
,
Y.
,
2009
, “
A Novel Family of Leaf-Type Compliant Joints: Combination of Two Isosceles-Trapezoidal Flexural Pivots
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021005
.
17.
Huo
,
T.
,
Yu
,
J.
,
Zhao
,
H.
,
Wu
,
H.
, and
Zhang
,
Y.
,
2021
, “
A Family of Novel RCM Rotational Compliant Mechanisms Based on Parasitic Motion Compensation
,”
Mech. Mach. Theory
,
156
, p.
104168
.
18.
Zhao
,
H.
, and
Bi
,
S.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
19.
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Design of a Triple Crossed Flexure Pivot with Minimized Parasitic Shift
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8A: 45th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
.
20.
Liu
,
L.
,
Bi
,
S.
,
Yang
,
Q.
, and
Wang
,
Y.
,
2014
, “
Design and Experiment of Generalized Triple-Cross-Spring Flexure Pivots Applied to the Ultra-Precision Instruments
,”
Rev. Sci. Instrum.
,
85
(
10
), p.
105102
.
21.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
Proceedings of the 10th ESMATS
,
San Sebastian, Spain
,
Sept. 24–26
, pp.
1
4
.
22.
Thalmann
,
E.
, and
Henein
,
S.
,
2022
, “
Triple Crossed Flexure Pivot Based on a Zero Parasitic Center Shift Kinematic Design
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
045001
.
23.
Wiersma
,
D.
,
Boer
,
S.
,
Aarts
,
R.
, and
Brouwer
,
D.
,
2014
, “
Design and Performance Optimization of Large Stroke Spatial Flexures
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
1
), p.
011016
.
24.
Tissot-Daguette
,
L.
, and
Henein
,
S.
,
2022
, “Pivot, Process for Manufacturing Such a Pivot, Oscillator Comprising Such a Pivot, Watch Movement and Timepiece Comprising Such an Oscillator,” Patent EP 22206404.0, Holder EPFL.
25.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
8
(
2
), pp.
127
145
.
26.
Kahrobaiyan
,
M.
,
Thalmann
,
E.
,
Rubbert
,
L.
,
Vardi
,
I.
, and
Henein
,
S.
,
2018
, “
Gravity-Insensitive Flexure Pivot Oscillators
,”
ASME J. Mech. Des.
,
140
(
7
), p.
075002
.
27.
Thalmann
,
E.
,
Gubler
,
Q.
, and
Henein
,
S.
,
2022
, “
Gravity-Compensation Design Approaches for Flexure-Pivot Time Bases
,”
Machines
,
10
(
7
), p.
580
.
28.
Tissot-Daguette
,
L.
,
Thalmann
,
E.
,
Cosandier
,
F.
, and
Henein
,
S.
,
2023
, “
Zero Parasitic Shift Pivoting Kinematic Structures Based on Coupled N-RRR Planar Parallel Mechanisms for Flexure Pivot Design
,”
Proceedings of the ASME 2023 IDETC-CIE Conference
,
Boston, MA
,
Aug. 20–23
, ASME, p. V008T08A026.
29.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
30.
Cosandier
,
F.
,
Henein
,
S.
,
Richard
,
M.
, and
Rubbert
,
L.
,
2017
,
The Art of Flexure Mechanism Design
,
EPFL Press
,
Lausanne
.
31.
Thalmann
,
E.
, and
Henein
,
S.
,
2021
, “
Design of a Flexure Rotational Time Base With Varying Inertia
,”
ASME J. Mech. Des.
,
143
(
11
), p.
115001
.
You do not currently have access to this content.