Abstract

Determining the workspace of a robotic manipulator is highly significant for knowing its abilities and planning the robot application. Several techniques exist for robot workspace determination. However, these methods are usually affected by computational redundancy, like in the Monte Carlo based method case, and their implementation can be complex. The workspace analysis of kinematic redundant manipulators is even more complex. This paper proposes a kinematically optimized ray-based workspace determination algorithm based on a simple idea and not affected by computational redundancy. The proposed method can be applied to any serial robot but is tested only on spatial kinematic redundant robots. The results show how the approach can correctly determine the robot workspace boundaries in a short time. Then, the correctness and computational time of the proposed optimized ray-based method are compared to pseudo-inverse Jacobian ray-based and Monte Carlo methods. The comparison demonstrates that the proposed method has better results in a shorter time. Finally, some limitations of the proposed algorithm are discussed.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dombre
,
E.
, and
Khalil
,
W.
,
2004
,
Modeling, Identification and Control of Robots
,
Butterworth-Heinemann
.
2.
Du
,
Z.-C.
,
Ouyang
,
G.-Y.
,
Xue
,
J.
, and
Yao
,
Y.-B.
,
2020
, “
A Review on Kinematic, Workspace, Trajectory Planning and Path Planning of Hyper-Redundant Manipulators
,”
Proceedings of 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems
,
Xi'an, China
,
Oct. 10–13
,
IEEE
, pp.
444
449
.
3.
Yahya
,
S.
,
Moghavvemi
,
M.
, and
Mohamed
,
H. A.
,
2011
, “
Geometrical Approach of Planar Hyper-Redundant Manipulators: Inverse Kinematics, Path Planning and Workspace
,”
Simul. Modell. Pract. Theory
,
19
(
1
), pp.
406
422
.
4.
Bohigas
,
O.
,
Manubens
,
M.
, and
Ros
,
L.
,
2012
, “
A Complete Method for Workspace Boundary Determination on General Structure Manipulators
,”
IEEE Trans. Rob.
,
28
(
5
), pp.
993
1006
.
5.
Peidró
,
A.
,
Marín
,
J. M.
, and
Payá
,
L.
,
2017
, “
An Improved Monte Carlo Method Based on Gaussian Growth to Calculate the Workspace of Robots
,”
Eng. Appl. Artificial Intell.
,
64
, pp.
197
207
.
6.
Guan
,
Y.
, and
Yokoi
,
K.
,
2006
, “
Reachable Space Generation of a Humanoid Robot Using the Monte Carlo Method
,” Proceedings of International Conference on Intelligent Robots and Systems,
IEEE
, pp.
1984
1989
.
7.
Li
,
L.
,
Shang
,
J.
,
Feng
,
Y.
, and
Yawen
,
H.
,
2018
, “
Research of Trajectory Planning for Articulated Industrial Robot: A Review
,”
Comput. Eng. Appl.
,
54
(
5
), pp.
36
50
.
8.
Zhao
,
Z.
,
He
,
S.
,
Zhao
,
Y.
,
Xu
,
C.
,
Wu
,
Q.
, and
Xu
,
Z.
,
2018
, “
Workspace Analysis for a 9-DOF Hyper-Redundant Manipulator Based on an Improved Monte Carlo Method and Voxel Algorithm
,”
Proceedings of International Conference on Mechatronics and Automation
,
Changchun, China
,
Aug. 5–8
,
IEEE
, pp.
637
642
.
9.
Fernández-Sarría
,
A.
,
Martínez
,
L.
,
Velázquez-Martí
,
B.
,
Sajdak
,
M.
,
Estornell
,
J.
, and
Recio
,
J.
,
2013
, “
Different Methodologies for Calculating Crown Volumes of Platanus Hispanica Trees Using Terrestrial Laser Scanner and a Comparison With Classical Dendrometric Measurements
,”
Comput. Elect. Agric.
,
90
, pp.
176
185
.
10.
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2004
, “
Workspace Generation of Hyper-Redundant Manipulators as a Diffusion Process on Se (n)
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
399
408
.
11.
Dong
,
H.
,
Du
,
Z.
, and
Chirikjian
,
G. S.
,
2013
, “
Workspace Density and Inverse Kinematics for Planar Serial Revolute Manipulators
,”
Mech. Mach. Theory
,
70
, pp.
508
522
.
12.
Dong
,
H.
,
Fan
,
T.
,
Du
,
Z.
, and
Chirikjian
,
G. S.
,
2015
, “
Inverse Kinematics of Discretely Actuated Ball-Joint Manipulators Using Workspace Density
,” Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
57144
,
American Society of Mechanical Engineers
, p.
V05CT08A039
.
13.
Han
,
Y.
,
Pan
,
J.
,
Xia
,
M.
,
Zeng
,
L.
, and
Liu
,
Y.-J.
,
2021
, “
Efficient Se (3) Reachability Map Generation Via Interplanar Integration of Intra-Planar Convolutions
,”
Proceedings of International Conference on Robotics and Automation
,
Xi'an, China
,
May 30–June 5
2021,
IEEE
, pp.
1854
1860
.
14.
Kurniawati
,
H.
, and
Hsu
,
D.
,
2004
, “
Workspace Importance Sampling for Probabilistic Roadmap Planning
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566)
,
Sendai, Japan
,
Sept. 28–Oct. 2
, Vol.
2
,
IEEE
, pp.
1618
1623
.
15.
Edwards
,
P. B.
,
Baskar
,
A.
,
Hills
,
C.
,
Plecnik
,
M.
, and
Hauenstein
,
J. D.
,
2023
, “
Output Mode Switching for Parallel Five-Bar Manipulators Using a Graph-Based Path Planner
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
,
IEEE
, pp.
9735
9741
.
16.
Abbasnejad
,
G.
,
Eden
,
J.
, and
Lau
,
D.
,
2019
, “
Generalized Ray-Based Lattice Generation and Graph Representation of Wrench-Closure Workspace for Arbitrary Cable-Driven Robots
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
147
161
.
17.
Zhang
,
Z.
,
Cheng
,
H. H.
, and
Lau
,
D.
,
2020
, “
Efficient Wrench-Closure and Interference-Free Conditions Verification for Cable-Driven Parallel Robot Trajectories Using a Ray-Based Method
,”
IEEE Rob. Autom. Lett.
,
5
(
1
), pp.
8
15
.
18.
Cheng
,
H. H.
, and
Lau
,
D.
,
2022
, “
Ray-Based Cable and Obstacle Interference-Free Workspace for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
172
, p.
104782
.
19.
Chirikjian
,
G. S.
, and
Burdick
,
J. W.
,
1994
, “
A Hyper-Redundant Manipulator
,”
IEEE Rob. Autom. Mag.
,
1
(
4
), pp.
22
29
.
20.
Simetti
,
E.
, and
Casalino
,
G.
,
2016
, “
A Novel Practical Technique to Integrate Inequality Control Objectives and Task Transitions in Priority Based Control
,”
J. Intell. Rob. Syst.
,
84
(
1–4
), pp.
877
902
.
21.
Simetti
,
E.
,
Casalino
,
G.
,
Aicardi
,
M.
, and
Wanderlingh
,
F.
,
2018
, “
Task Priority Control of Underwater Intervention Systems: Theory and Applications
,”
Ocean Eng.
,
164
, pp.
40
54
.
22.
Simetti
,
E.
,
Casalino
,
G.
,
Aicardi
,
M.
, and
Wanderlingh
,
F.
,
2019
, “
A Task Priority Approach to Cooperative Mobile Manipulation: Theory and Experiments
,”
Rob. Auton. Syst.
,
122
, p.
103287
.
23.
Ginnante
,
A.
,
Caro
,
S.
,
Simetti
,
E.
, and
Leborne
,
F.
,
2023
, “
Kinetostatic Optimization for Kinematic Redundancy Planning of Nimbl’Bot Robot
,”
ASME J. Mech. Rob.
,
16
(3), p.
031007
.
24.
Angeles
,
J.
,
1992
, “
The Design of Isotropic Manipulator Architectures in the Presence of Redundancies
,”
Int. J. Rob. Res.
,
11
(
3
), pp.
196
201
.
25.
Khan
,
W. A.
, and
Angeles
,
J.
,
2005
, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
168
178
.
26.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
1992
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Rob. Res.
,
11
(
6
), pp.
560
571
.
27.
Pond
,
G.
, and
Carretero
,
J. A.
,
2006
, “
Formulating Jacobian Matrices for the Dexterity Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
41
(
12
), pp.
1505
1519
.
28.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
29.
Angeles
,
J.
,
2003
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms
,
Springer
.
30.
Park
,
J.
,
2000
, “Analysis and Control of Kinematically Redundant Manipulators: An Approach based on Kinematically Decoupled Joint Space Decomposition,” Ph.D. thesis, POSTECH.
31.
Marani
,
G.
,
Kim
,
J.
,
Yuh
,
J.
, and
Chung
,
W. K.
,
2002
, “
A Real-Time Approach for Singularity Avoidance in Resolved Motion Rate Control of Robotic Manipulators
,” Proceedings of International Conference on Robotics and Automation, Vol.
2
,
IEEE
, pp.
1973
1978
.
32.
Dufau
,
L.
,
2021
, “
Articulated Robot Arm
,” US Patent 10953554, https://uspto.report/patent/grant/10,953,554, Accessed January 23, 2023.
33.
Ginnante
,
A.
,
Leborne
,
F.
,
Caro
,
S.
,
Simetti
,
E.
, and
Casalino
,
G.
,
2021
, “
Design and Kinematic Analysis of a Novel 2-DOF Closed-Loop Mechanism for the Actuation of Machining Robots
,” Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
85444
,
American Society of Mechanical Engineers
.
34.
Di Rocco
,
S.
,
Eklund
,
D.
, and
Gäfvert
,
O.
,
2022
, “
Sampling and Homology Via Bottlenecks
,”
Math. Comput.
,
91
(
338
), pp.
2969
2995
.
You do not currently have access to this content.