Abstract

In concurrent work, we introduced a novel robotic package delivery system latching intelligent modular mobility system (LIMMS). Each LIMMS end effector requires a small, lightweight latching mechanism for pre-manufactured containers, such as cardboard boxes. In order to effectively process a high volume of packages, aligning the latching mechanism quickly and reliably is critical. Instead of depending on highly accurate controllers for alignment, we propose a novel self-aligning rotational mechanism to increase the system’s tolerance to misalignment. The radial latching design consists of evenly spaced blades that rotate into slots cut into the box. When misaligned, the blades contact the edges of the engagement slots, generating a self-correcting force that passively centers the blades with the slot pattern. This paper introduces a mathematical framework with closed form expressions to quantify error tolerance for these mechanisms. Through our mathematical and optimization analyses, it is shown that a two-blade design can tolerate a maximum misalignment of three times the radius to the blade tips, much larger than commonly used designs with three or more blade-like contacts. Our approach can be generalized for a class of rotational latching mechanisms with any number of blades. Utilizing this theory, a design process is laid out for developing an optimal self-aligning rotational latching mechanism given desired parameters and task constraints. With this methodology, we designed, manufactured, and verified the effectiveness of both two-blade and three-blade self-aligning in practical experiments.

References

1.
Zhu
,
T.
,
Fernandez
,
G.
,
Togashi
,
C.
,
Liu
,
Y.
, and
Hong
,
D.
,
2022
, “
Feasibility Study of LIMMS, a Multi-agent Modular Robotic Delivery System With Various Locomotion and Manipulation Modes
,”
2022 19th International Conference on Ubiquitous Robots (UR)
,
Jeju, South Korea
,
July 4–6
, IEEE, pp.
30
37
.
2.
Gökler
,
M. I.
, and
Koc
,
M. B.
,
1997
, “
Design of an Automatic Tool Changer With Disc Magazine for a CNC Horizontal Machining Center
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
277
286
.
3.
Hays
,
A. B.
,
Tchoryk Jr
,
P.
,
Pavlich
,
J. C.
,
Ritter
,
G. A.
, and
Wassick
,
G. J.
,
2004
, “Advancements in Design of an Autonomous Satellite Docking System,”
Spacecraft Platforms and Infrastructure
,
P.
Tchoryk Jr.
and
M.
Wright
, eds.,
SPIE
,
Bellingham, WA
, pp.
107
118
.
4.
Gampe
,
F.
,
Priesett
,
K.
, and
Bentall
,
R.
,
1985
, “
A Modular Docking Mechanism for In-Orbit Assembly and Spacecraft Servicing
,”
19th Aerospace Mechanical Symposium
,
Mountain View, CA
,
May 1–3
,
NASA AMES Research Center
, pp.
59
74
.
5.
Mccown
,
W.
, and
Bennett
,
N.
,
1988
, “
Structural Latches for Modular Assembly of Spacecraft and Space Mechanisms
,”
The 22nd Aerospace Mechanisms Symposium
,
Hampton, VA
,
May 4–6
,
NASA Langley Research Center
, pp.
29
44
.
6.
Sproewitz
,
A.
,
Billard
,
A.
,
Dillenbourg
,
P.
, and
Ijspeert
,
A. J.
,
2009
, “
Roombots-Mechanical Design of Self-Reconfiguring Modular Robots for Adaptive Furniture
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
,
IEEE
, pp.
4259
4264
.
7.
Parrott
,
C.
,
Dodd
,
T. J.
, and
Groß
,
R.
,
2014
, “
Higen: A High-Speed Genderless Mechanical Connection Mechanism With Single-Sided Disconnect for Self-Reconfigurable Modular Robots
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
3926
3932
.
8.
Liu
,
C.
,
Lin
,
Q.
,
Kim
,
H.
, and
Yim
,
M.
,
2023
, “
Smores-EP, a Modular Robot With Parallel Self-Assembly
,”
Autonomous Robots
,
47
, pp.
211
228
.
9.
Murata
,
S.
,
Yoshida
,
E.
,
Kamimura
,
A.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2002
, “
M-tran: Self-Reconfigurable Modular Robotic System
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
431
441
.
10.
Yim
,
M.
,
Duff
,
D. G.
, and
Roufas
,
K. D.
,
2000
, “
Polybot: A Modular Reconfigurable Robot
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
, Vol.
1
,
San Francisco, CA
,
Apr. 24–28
,
IEEE
, pp.
514
520
.
11.
Fukuda
,
T.
,
Ueyama
,
T.
,
Kawauchi
,
Y.
, and
Arai
,
F.
,
1992
, “
Concept of Cellular Robotic System (cebot) and Basic Strategies for Its Realization
,”
Comput. Electr. Eng.
,
18
(
1
), pp.
11
39
.
12.
Nilsson
,
M.
,
2002
, “
Heavy-Duty Connectors for Self-Reconfiguring Robots
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,
Washington, DC
,
May 11–15
, Vol.
4
,
IEEE
, pp.
4071
4076
.
13.
Sproewitz
,
A.
,
Asadpour
,
M.
,
Bourquin
,
Y.
, and
Ijspeert
,
A. J.
,
2008
, “
An Active Connection Mechanism for Modular Self-Reconfigurable Robotic Systems Based on Physical Latching
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
,
IEEE
, pp.
3508
3513
.
14.
Cruijssen
,
H.
,
Ellenbroek
,
M.
,
Henderson
,
M.
,
Petersen
,
H.
,
Verzijden
,
P.
, and
Visser
,
M.
,
2014
, “
The European Robotic Arm: A High-Performance Mechanism Finally on Its Way to Space
,”
42nd Aerospace Mechanisms Symposium
,
Baltimore, MD
,
May 14–16
, pp.
319
334
.
15.
Yip
,
H. M.
,
Wang
,
Z.
,
Navarro-Alarcon
,
D.
,
Li
,
P.
,
Liu
,
Y.-h.
, and
Cheung
,
T. H.
,
2015
, “
A New Robotic Uterine Positioner for Laparoscopic Hysterectomy With Passive Safety Mechanisms: Design and Experiments
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
,
IEEE
, pp.
3188
3194
.
16.
Eckenstein
,
N.
, and
Yim
,
M.
,
2012
, “
The X-face: An Improved Planar Passive Mechanical Connector for Modular Self-Reconfigurable Robots
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
,
IEEE
, pp.
3073
3078
.
17.
Fernandez
,
G. I.
,
Gessow
,
S.
,
Quan
,
J.
, and
Hong
,
D.
,
2022
, “
Self-Aligning Rotational Latching Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
,
American Society of Mechanical Engineers
, Vol. 86281, p. V007T07A024.
18.
Aboura
,
Z.
,
Talbi
,
N.
,
Allaoui
,
S.
, and
Benzeggagh
,
M.
,
2004
, “
Elastic Behavior of Corrugated Cardboard: Experiments and Modeling
,”
Compos. Struct.
,
63
(
1
), pp.
53
62
.
19.
Noh
,
D.
,
Liu
,
Y.
,
Rafeedi
,
F.
,
Nam
,
H.
,
Gillespie
,
K.
,
Yi
,
J.-S.
,
Zhu
,
T.
,
Xu
,
Q.
, and
Hong
,
D.
,
2020
, “
Minimal Degree of Freedom Dual-Arm Manipulation Platform With Coupling Body Joint for Diverse Cooking Tasks
,”
2020 17th International Conference on Ubiquitous Robots (UR)
,
Kyoto, Japan
,
June 22–26
, pp.
225
232
.
You do not currently have access to this content.