Abstract

This article presents the design, development, and motion control of a novel flexible robotic laparoscope (FRL). The main structure of the FRL includes a two degrees-of-freedom (DOFs) continuum mechanism driven by two pairs of cable-pulley-driven systems, which are actuated by four miniature linear actuators. A constant-curvature model is employed on the kinematics modeling and analysis of the continuum mechanism with designed major arc notches. The bending control strategy of the continuum mechanism is proposed and realized based on its kinematics model and a feedforward compensation method considering its nonlinearity motion calibration with a suitable initial tension of the driven cables. Besides, the continuum mechanism is made of elastic nylon material through 3D printing technology. An experimental prototype is developed to test the effectiveness and feasibility of the FRL. The experimental results indicate that the FRL has good positioning accuracy and motion performance with potential applications in robot-assisted laparoscopic surgery.

References

1.
Kong
,
K.
,
Wang
,
S. X.
,
Li
,
J. M.
, and
Su
,
H.
,
2021
, “
Full-Dimensional Intuitive Motion Mapping Strategy for Minimally Invasive Surgical Robot With Redundant Passive Joints
,”
ASME J. Med. Devices
,
15
(
1
), p.
011102
.
2.
Yang
,
Y. K.
,
Kong
,
K.
,
Li
,
J. M.
,
Wang
,
S. X.
, and
Li
,
J. H.
,
2019
, “
Design and Evaluation of a Dexterous and Modular Hand-Held Surgical Robot for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
13
(
4
), p.
041005
.
3.
Wortman
,
T. D.
,
Mondry
,
J. M.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2013
, “
Single-site Colectomy With Miniature in Vivo Robotic Platform
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
926
929
.
4.
Petroni
,
G.
,
Niccolini
,
M.
,
Caccavaro
,
S.
,
Quaglia
,
C.
,
Menciassi
,
A.
,
Schostek
,
S.
,
Basili
,
G.
,
Goletti
,
O.
,
Schurr
,
M. O.
, and
Dario
,
P.
,
2013
, “
A Novel Robotic System for Single-Port Laparoscopic Surgery: Preliminary Experience
,”
Surg. Endosc.
,
27
(
6
), pp.
1932
1937
.
5.
Ding
,
J.
,
Goldman
,
R. E.
,
Xu
,
K.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2013
, “
Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery
,”
IEEE/ASME Trans. Mechatron.
,
18
(
5
), pp.
1612
1624
.
6.
Bao
,
S. Y.
,
Wang
,
Z. Y.
,
Wei
,
X.
,
Zhou
,
C.
,
Liu
,
G. M.
, and
Zhao
,
P.
,
2021
, “
Design, Development, and Preliminary Experimental Analysis of a Novel Robotic Laparoscope with Continuum Mechanism
,”
Proceedings of the 2021 International Conference on Intelligent Robotics and Applications
,
Yantai, China
,
Oct. 22–25, 2021
, pp.
82
92
.
7.
Xu
,
K.
,
Zhao
,
J. R.
, and
Fu
,
M. X.
,
2015
, “
Development of the SJTU Unfoldable Robotic System (SURS) for Single Port Laparoscopy
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2133
2145
.
8.
Lee
,
J.
,
Kim
,
Y. J.
,
Roh
,
S. G.
,
Kim
,
J.
, and
Roh
,
K.
,
2014
, “
Tension Propagation Analysis of Novel Robotized Surgical Platform for Transumbilical Single-Port Access Surgery
,”
Proceedings of the 2013 IEEE/ RSJ International Conference on Intelligent Robots & Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3083
3089
.
9.
Kaouk
,
J. H.
,
Haber
,
G. P.
,
Autorino
,
R.
,
Crouzet
,
S.
,
Ouzzane
,
A.
,
Flamand
,
V.
, and
Villers
,
A.
,
2014
, “
A Novel Robotic System for Single-Port Urologic Surgery: First Clinical Investigation
,”
Eur. Urol.
,
66
(
6
), pp.
1033
1043
.
10.
Pryor
,
A. D.
,
Tushar
,
J. R.
, and
Dibernardo
,
L. R.
,
2010
, “
Single-Port Cholecystectomy With the TransEnterix SPIDER: Simple and Safe
,”
Surg. Endosc.
,
24
(
4
), pp.
917
923
.
11.
Allison
,
O. M.
,
2009
, “
Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
,”
Curr. Opin. Urol.
,
19
(
1
), pp.
102
107
.
12.
Ettorre
,
C. D.
,
Mariani
,
A.
,
Stilli
,
A.
,
Baena
,
F. R.
,
Valdastri
,
P.
,
Deguet
,
A.
,
Kazanzides
,
P.
, et al
,
2021
, “
Accelerating Surgical Robotics Research: A Review of 10 Years With the da Vinci Research Kit
,”
IEEE Rob. Autom. Mag.
,
28
(
4
), pp.
56
78
.
13.
Lai
,
W. J.
,
Cao
,
L.
,
Tan
,
R. X.
,
Phan
,
P. T.
,
Hao
,
J. Z.
,
Tjin
,
S. C.
, and
Phee
,
S. J.
,
2020
, “
Force Sensing With 1 mm Fiber Bragg Gratings for Flexible Endoscopic Surgical Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
371
382
.
14.
Zhang
,
G. Y.
,
Liu
,
S. Z.
,
Yu
,
W. B.
,
Wang
,
L.
,
Nan
,
L.
,
Feng
,
L.
, and
Hu
,
S. Y.
,
2011
, “
Gasless Laparoendoscopic Single-Site Surgery With Abdominal Wall Lift in General Surgery: Initial Experience
,”
Surg. Endosc.
,
25
(
1
), pp.
298
304
.
15.
Bajo
,
A.
,
Goldman
,
R. E.
,
Long
,
W.
,
Fowler
,
D.
, and
Simaan
,
N.
, “
Integration and Preliminary Evaluation of an Insertable Robotic Effectors Platform for Single Port Access Surgery
,”
Proceedings of the 2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May14–19
, pp.
3381
3387
.
16.
Li
,
Z.
,
Oo
,
M. Z.
,
Nalam
,
V.
,
Thang
,
V. D.
,
Ren
,
H. L.
,
Kofidis
,
T.
, and
Yu
,
H. Y.
,
2016
, “
Design of a Novel Flexible Endoscope—Cardioscope
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051014
.
17.
Dai
,
Z. C.
,
Wu
,
Z. H.
,
Zhao
,
J. R.
, and
Xu
,
K.
,
2019
, “
A Robotic Laparoscopic Tool With Enhanced Capabilities and Modular Actuation
,”
Sci. China Technol. Sci.
,
62
(
1
), pp.
47
59
.
18.
Duan
,
J. H.
,
Shao
,
Z. F.
,
Zhang
,
Z. K.
, and
Peng
,
F. Z.
,
2022
, “
Performance Simulation and Energetic Analysis of TBot High-Speed Cable-Driven Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
024504
.
19.
Wang
,
X. Y.
,
Guo
,
S.
,
Qu
,
B. J.
,
Song
,
M. J.
,
Wang
,
P. Y.
, and
Liu
,
D. X.
,
2022
, “
Design and Experimental Verification of a Parallel Hip Exoskeleton System for Full-Gait-Cycle Rehabilitation
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
054504
.
20.
Liu
,
H.
,
Selvaggio
,
M.
,
Ferrentino
,
P.
,
Moccia
,
R.
,
Pirozzi
,
S.
,
Bracale
,
U.
, and
Ficuciello
,
F.
,
2021
, “
The MUSHA Hand II: A Multifunctional Hand for Robot-Assisted Laparoscopic Surgery
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
393
404
.
21.
Pedram
,
S. A.
,
Shin
,
C.
,
Ferguson
,
P. W.
,
Ma
,
J.
,
Dutson
,
E. P.
, and
Rosen
,
J.
,
2021
, “
Autonomous Suturing Framework and Quantification Using a Cable-Driven Surgical Robot
,”
IEEE Trans. Rob.
,
37
(
2
), pp.
404
417
.
22.
Murphy
,
R. J.
,
Kutzer
,
M. D. M.
,
Segreti
,
S. M.
,
Lucas
,
B. C.
, and
Armand
,
M.
,
2014
, “
Design and Kinematic Characterization of a Surgical Manipulator With a Focus on Treating Osteolysis
,”
Robotica
,
32
(
6
), pp.
835
850
.
23.
Ma
,
J. H.
,
Sefati
,
S.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2021
, “
An Active Steering Hand-Held Robotic System for Minimally Invasive Orthopaedic Surgery Using a Continuum Manipulator
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1622
1629
.
24.
Dong
,
X.
,
Raffles
,
M.
,
Cobos-Guzman
,
S.
,
Axinte
,
D.
, and
Kell
,
J.
,
2016
, “
A Novel Continuum Robot Using Twin-Pivot Compliant Joints: Design, Modeling, and Validation
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021010
.
25.
Li
,
W. B.
,
Song
,
C. Z.
, and
Li
,
Z.
,
2020
, “
An Accelerated Recurrent Neural Network for Visual Servo Control of a Robotic Flexible Endoscope With Joint Limit Constraint
,”
IEEE Trans. Ind. Electron.
,
67
(
12
), pp.
10787
10797
.
26.
Wu
,
Z. H.
,
Li
,
Q.
,
Zhao
,
J. R.
,
Gao
,
J. P.
, and
Xu
,
K.
,
2019
, “
Design of a Modular Continuum-Articulated Laparoscopic Robotic Tool With Decoupled Kinematics
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
3545
3552
.
27.
Morimoto
,
T. K.
, and
Okamura
,
M. A.
,
2016
, “
Design of 3-D Printed Concentric Tube Robots
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1419
1430
.
28.
Amanov
,
E.
,
Ropella
,
D. S.
,
Nimmagadda
,
N.
,
Ertop
,
T. E.
, and
Webster
,
R. J.
,
2020
, “
Transurethral Anastomosis After Transurethral Radical Prostatectomy: A Phantom Study on Intraluminal Suturing With Concentric Tube Robots
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
4
), pp.
578
581
.
29.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
1776
1781
.
30.
Legrand
,
J.
,
Ourak
,
M.
,
Vandebroek
,
T.
, and
Poorten
,
E. V.
,
2021
, “
A Large Displacement Model for Superelastic Material Side-Notched Tube Instruments
,”
Int. J. Mech. Sci.
,
197
, p.
106329
.
31.
Pacheco
,
N. E.
,
Gafford
,
J. B.
,
Atalla
,
M. A.
,
Webster
,
R. J.
, and
Fichera
,
L.
,
2021
, “
Beyond Constant Curvature: A New Mechanics Model for Unidirectional Notched-Tube Continuum Wrists
,”
J. Med. Rob. Res.
,
6
(
1–2
), p.
2140004
.
32.
Chitalia
,
Y.
,
Jeong
,
S.
,
Deaton
,
N.
,
Chern
,
J. J.
, and
Desai
,
J. P.
,
2020
, “
Design and Kinematics Analysis of a Robotic Pediatric Neuroendoscope Tool Body
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
985
995
.
33.
Chen
,
Y. Y.
,
Wu
,
B. B.
,
Jin
,
J. B.
, and
Xu
,
K.
,
2021
, “
A Variable Curvature Model for Multi-Backbone Continuum Robots to Account for Inter-Segment Coupling and External Disturbance
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1590
1597
.
34.
Lakhal
,
O.
,
Melingui
,
A.
, and
Merzouki
,
R.
,
2016
, “
Hybrid Approach for Modeling and Solving of Kinematics of a Compact Bionic Handling Assistant Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1326
1335
.
35.
Sefati
,
S.
,
Gao
,
C.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2021
, “
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor
,”
IEEE Sens. J.
,
21
(
3
), pp.
3066
3076
.
36.
Adhami
,
L.
, and
Coste-Maniere
,
E.
,
2003
, “
Optimal Planning for Minimally Invasive Surgical Robots
,”
IEEE Trans. Rob. Autom.
,
19
(
5
), pp.
854
863
.
37.
Zhang
,
X.
,
Li
,
W. B.
,
Chiu
,
P. W. Y.
, and
Li
,
Z.
,
2020
, “
A Novel Flexible Robotic Endoscope With Constrained Tendon-Driven Continuum Mechanism
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1366
1372
.
38.
Li
,
L.
,
Li
,
X. J.
,
Ouyang
,
B.
,
Ding
,
S.
,
Yang
,
S. L.
, and
Qu
,
Y. W.
,
2021
, “
Autonomous Multiple Instruments Tracking for Robot-Assisted Laparoscopic Surgery With Visual Tracking Space Vector Method
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
733
743
.
39.
Sadeghian
,
H.
,
Zokaei
,
F.
, and
Jazi
,
S. H.
,
2019
, “
Constrained Kinematic Control in Minimally Invasive Robotic Surgery Subject to Remote Center of Motion Constraint
,”
J. Intell. Rob. Syst.
,
95
(
3
), pp.
901
913
.
40.
Musa
,
M. J.
,
Sharma
,
K.
,
Cleary
,
K.
, and
Chen
,
Y.
,
2021
, “
Respiratory Compensated Robot for Liver Cancer Treatment: Design, Fabrication, and Benchtop Characterization
,”
IEEE/ASME Trans. Mechatron.
,
27
(
1
), pp.
268
279
.
41.
Kim
,
Y. J.
,
Seo
,
J. H.
,
Kim
,
H. R.
, and
Kim
,
K. G.
,
2017
, “
Impedance and Admittance Control for Respiratory-Motion Compensation During Robotic Needle Insertion—A Preliminary Test
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
13
(
4
), p.
e1795
.
You do not currently have access to this content.