Abstract

Cable-driven serial-chain manipulators, CDSMs, are widely used from industries to human–robot interaction applications demanding diverse performance requirements. The CDSMs inherent characteristic of flexibility in altering system parameters facilitates the possibility of varying its performance as per the desired application and thus has been explored in the literature. Among the various performance measures, stiffness plays a vital role in manipulators interaction with unknown environments. Works in the literature reported varying CDSMs system parameters to tune the stiffness characteristics and highlighted the tensionable workspace’s sensitivity to the changes in the system parameters. The current work demonstrates the potential of co-shared cable routing in CDSMs along with a set of design conditions to provide a broader range of stiffness characteristics for a constant tensionable workspace. The results are presented using a planar two degrees-of-freedom (DOFs) CDSM, and the stiffness changes are validated experimentally. This outcome shows that CDSM with co-shared cable routing can render a wide range of stiffness behavior.

References

1.
Pandilov
,
Z.
, and
Dukovski
,
V.
,
2014
, “
Comparison of the Characteristics Between Serial and Parallel Robots
,”
Acta Tech. Corvininesis-Bull. Eng.
,
7
(
1
), pp.
143
160
.
2.
Summers
,
M.
,
2005
, “
Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry
,”
SAE Trans.
,
114
(
1
), pp.
1108
1118
.
3.
Lin
,
Y.
,
Zhao
,
H.
, and
Ding
,
H.
,
2017
, “
Posture Optimization Methodology of 6r Industrial Robots for Machining Using Performance Evaluation Indexes
,”
Robot. Comput.-Integr. Manuf.
,
48
(
1
), pp.
59
72
.
4.
Lehmann
,
C.
,
Pellicciari
,
M.
,
Drust
,
M.
, and
Gunnink
,
J. W.
,
2013
, “
Machining With Industrial Robots: The Comet Project Approach
,”
International Workshop on Robotics in Smart Manufacturing
,
Berlin, Germany
, Springer, pp.
27
36
.
5.
Albus
,
K.
,
Wahab
,
A.
, and
Heinemann
,
U.
,
2008
, “
Standard Antiepileptic Drugs Fail to Block Epileptiform Activity in Rat Organotypic Hippocampal Slice Cultures
,”
Br. J. Pharmacol.
,
154
(
3
), pp.
709
724
.
6.
Ramadoss
,
V.
,
Lau
,
D.
,
Zlatanov
,
D.
, and
Zoppi
,
M.
,
2020
, “
Analysis of Planar Multilink Cable Driven Robots Using Internal Routing Scheme
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
.
7.
Wang
,
Y.
,
Song
,
C.
,
Zheng
,
T.
,
Lau
,
D.
,
Yang
,
K.
, and
Yang
,
G.
,
2019
, “
Cable Routing Design and Performance Evaluation for Multi-link Cable-Driven Robots With Minimal Number of Actuating Cables
,”
IEEE Access
,
7
(
1
), pp.
135790
135800
.
8.
Matsutani
,
Y.
,
Tahara
,
K.
,
Kino
,
H.
, and
Ochi
,
H.
,
2017
, “
Stiffness Evaluation of a Tendon-Driven Robot With Variable Joint Stiffness Mechanisms
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
, IEEE, pp.
213
218
.
9.
Mustafa
,
S. K.
, and
Agrawal
,
S. K.
,
2011
, “
On the Force-Closure Analysis of N-DOF Cable-Driven Open Chains Based on Reciprocal Screw Theory
,”
IEEE Trans. Robot.
,
28
(
1
), pp.
22
31
.
10.
Verhoeven
,
R.
, and
Hiller
,
M.
,
2000
, “Estimating the Controllable Workspace of Tendon-Based Stewart Platforms,”
Advances in Robot Kinematics
,
Springer
, pp.
277
284
.
11.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2007
, “
Tensionability Conditions of a Multi-body System Driven by Cables
,”
ASME International Mechanical Engineering Congress and Exposition
,
Seattle, WA
, Vol. 43033, pp.
1369
1375
.
12.
Bosscher
,
P.
,
Riechel
,
A. T.
, and
Ebert-Uphoff
,
I.
,
2006
, “
Wrench-Feasible Workspace Generation for Cable-Driven Robots
,”
IEEE Trans. Robot.
,
22
(
5
), pp.
890
902
.
13.
Lau
,
D.
,
Oetomo
,
D.
, and
Halgamuge
,
S. K.
,
2013
, “
Generalized Modeling of Multilink Cable-Driven Manipulators With Arbitrary Routing Using the Cable-Routing Matrix
,”
IEEE Trans. Robot.
,
29
(
5
), pp.
1102
1113
.
14.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
457
465
.
15.
Gosselin
,
C.
,
Lefrançois
,
S.
, and
Zoso
,
N.
,
2010
, “Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies,”
Brain, Body and Machine
,
Springer
, pp.
311
323
.
16.
Verhoeven
,
R.
,
Hiller
,
M.
, and
Tadokoro
,
S.
,
1998
, “Workspace, Stiffness, Singularities and Classification of Tendon-Driven Stewart Platforms,”
Advances in Robot Kinematics: Analysis and Control
,
Springer
, pp.
105
114
.
17.
Salisbury
,
J. K.
,
1980
, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
1980 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes
,
Albuquerque, NM
, IEEE, pp.
95
100
.
18.
Lee
,
Y.-T.
,
Choi
,
H.-R.
,
Chung
,
W.-K.
, and
Youm
,
Y.
,
1994
, “
Stiffness Control of a Coupled Tendon-Driven Robot Hand
,”
IEEE Control Syst. Mag.
,
14
(
5
), pp.
10
19
.
19.
Ham
,
R. V.
,
Sugar
,
T.
,
Vanderborght
,
B.
,
Hollander
,
K.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuator Designs
,”
IEEE Robot. Autom. Mag.
,
3
(
16
), pp.
81
94
.
20.
Rao
,
P.
,
Thomas
,
G. C.
,
Sentis
,
L.
, and
Deshpande
,
A. D.
,
2017
, “
Analyzing Achievable Stiffness Control Bounds of Robotic Hands With Coupled Finger Joints
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3447
3452
.
21.
Garate
,
V. R.
,
Pozzi
,
M.
,
Prattichizzo
,
D.
,
Tsagarakis
,
N.
, and
Ajoudani
,
A.
,
2018
, “
Grasp Stiffness Control in Robotic Hands Through Coordinated Optimization of Pose and Joint Stiffness
,”
IEEE Robot. Autom. Lett.
,
3
(
4
), pp.
3952
3959
.
22.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1266
1279
.
23.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
24.
Sanjeevi
,
N.
, and
Vashista
,
V.
,
2017
, “
On the Stiffness Analysis of a Cable Driven Leg Exoskeleton
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, IEEE, pp.
455
460
.
25.
Kock
,
S.
, and
Schumacher
,
W.
,
1998
, “
A Parallel Xy Manipulator With Actuation Redundancy for High-Speed and Active-Stiffness Applications
,”
Proceedings 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
,
Leuven, Belgium
, Vol. 3, IEEE, pp.
2295
2300
.
26.
Huang
,
S.
, and
Schimmels
,
J. M.
,
1998
, “
The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,”
IEEE Trans. Rob. Autom.
,
14
(
3
), pp.
466
475
.
27.
Lee
,
C.
,
Kim
,
D.-H.
,
Singh
,
H.
, and
Ryu
,
J.-H.
,
2020
, “
Successive Stiffness Increment and Time Domain Passivity Approach for Stable and High Bandwidth Control of Series Elastic Actuator
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
, IEEE, pp.
4717
4723
.
28.
Simaan
,
N.
, and
Shoham
,
M.
,
2003
, “
Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,”
Int. J. Robot. Res.
,
22
(
9
), pp.
757
775
.
29.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2019
, “
Directional Stiffness Modulation of Parallel Robots With Kinematic Redundancy and Variable Stiffness Joints
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051003
.
30.
Stilli
,
A.
,
Grattarola
,
L.
,
Feldmann
,
H.
,
Wurdemann
,
H. A.
, and
Althoefer
,
K.
,
2017
, “
Variable Stiffness Link (VSL): Toward Inherently Safe Robotic Manipulators
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
4971
4976
.
31.
Xiong
,
G.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2019
, “
Stiffness-Based Pose Optimization of an Industrial Robot for Five-Axis Milling
,”
Robot. Comput.-Integr. Manuf.
,
55
(
1
), pp.
19
28
.
32.
Song
,
Z.
,
Zhou
,
L.
,
Li
,
Y.
, and
Xuan
,
W.
,
2019
, “
Design and Control of a Series Elastic Actuator With High Compliance for Serial Manipulators
,”
2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
Suzhou, China
,
July 29–Aug. 2
, IEEE, pp.
872
876
..
33.
Zhou
,
X.
,
Jun
,
S.-K.
, and
Krovi
,
V.
,
2015
, “
A Cable Based Active Variable Stiffness Module With Decoupled Tension
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011005
.
34.
Sanjeevi
,
N.
, and
Vashista
,
V.
,
2021
, “
Stiffness Modulation of a Cable-Driven Leg Exoskeleton for Effective Human–Robot Interaction
,”
Robotica
,
39
(
12
), pp.
2172
2192
.
35.
Ramadoss
,
V.
,
Sagar
,
K.
,
Ikbal
,
M. S.
,
Zlatanov
,
D.
, and
Zoppi
,
M.
,
2021
, “
Modeling and Stiffness Evaluation of Tendon-Driven Robot for Collaborative Human–Robot Interaction
,”
2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR)
,
Tokoname, Japan
, pp.
233
238
.
36.
Dagalakis
,
N. G.
,
Albus
,
J. S.
,
Wang
,
B.-L.
,
Unger
,
J.
, and
Lee
,
J. D.
,
1989
, “
Stiffness Study of a Parallel Link Robot Crane for Shipbuilding Applications
,”
ASME J. Offshore Mech. Arct. Eng
,
111
(
3
), pp.
183
193
.
37.
Du
,
J.
,
Bao
,
H.
, and
Cui
,
C.
,
2014
, “
Stiffness and Dexterous Performances Optimization of Large Workspace Cable-Driven Parallel Manipulators
,”
Adv. Robot.
,
28
(
3
), pp.
187
196
.
38.
Abdolshah
,
S.
,
Zanotto
,
D.
,
Rosati
,
G.
, and
Agrawal
,
S. K.
,
2017
, “
Optimizing Stiffness and Dexterity of Planar Adaptive Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031004
.
39.
Yeo
,
S.
,
Yang
,
G.
, and
Lim
,
W.
,
2013
, “
Design and Analysis of Cable-Driven Manipulators With Variable Stiffness
,”
Mech. Mach. Theory
,
69
(
11
), pp.
230
244
.
40.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031011
.
41.
Raman
,
A.
,
Schmid
,
M.
, and
Krovi
,
V.
,
2020
, “
Stiffness Modulation for a Planar Mobile Cable-Driven Parallel Manipulators Via Structural Reconfiguration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
.
42.
Riehl
,
N.
,
Gouttefarde
,
M.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2010
, “
On the Determination of Cable Characteristics for Large Dimension Cable-Driven Parallel Mechanisms
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AL
,
May 3–8
, p. V010T10A054.
43.
Rezazadeh
,
S.
, and
Behzadipour
,
S.
,
2011
, “
Workspace Analysis of Multibody Cable-Driven Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021005
.
44.
Sanjeevi
,
N.
, and
Vashista
,
V.
,
2019
, “
Effect of Cable Co-Sharing on the Workspace of a Cable-Driven Serial Chain Manipulator
,”
Proceedings of the Advances in Robotics 2019
,
Chennai, India
, July 2–6, pp.
1
6
.
45.
Sheng
,
Z.
,
Park
,
J.-H.
,
Stegall
,
P.
, and
Agrawal
,
S. K.
,
2015
, “
Analytic Determination of Wrench Closure Workspace of Spatial Cable Driven Parallel Mechanisms
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
46.
Zhou
,
X.
,
Jun
,
S.-K.
, and
Krovi
,
V.
,
2014
, “
Stiffness Modulation Exploiting Configuration Redundancy in Mobile Cable Robots
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong
,
May 31–June 7
, pp.
5934
5939
.
47.
Zhou
,
X.
,
Tang
,
C. P.
, and
Krovi
,
V.
,
2013
, “Cooperating Mobile Cable Robots: Screw Theoretic Analysis,”
Redundancy in Robot Manipulators and Multi-Robot Systems
,
Springer
, pp.
109
123
.
48.
Masiero
,
S.
,
Armani
,
M.
, and
Rosati
,
G.
,
2011
, “
Upper-Limb Robot-Assisted Therapy in Rehabilitation of Acute Stroke Patients: Focused Review and Results of New Randomized Controlled Trial
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
355
366
.
49.
Jin
,
X.
,
Cui
,
X.
, and
Agrawal
,
S. K.
,
2015
, “
Design of a Cable-Driven Active Leg Exoskeleton (c-alex) and Gait Training Experiments With Human Subjects
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
5578
5583
.
You do not currently have access to this content.