Abstract

Soft manipulators attract increasing interest in robotic applications involving the unstructured environment and human-robot interaction. The majority of the soft manipulator with fluidic actuators consists of joints that are constructed by parallel actuators, achieving rotation and extension. The inability to output twisting and lateral translations concurrently in the joints hinders the applications of such soft manipulators that require dexterous manipulation. In this work, the tilted actuator soft robotic (TASR) joint with 6DOF mobility, i.e., three rotations and three translations, is studied by kinematic modeling, simulations, and experiments. The 6DOF joint has a lightweight (74.8 g) due to the implementation of soft origami actuators (SOA) and soft-rigid structure. The investigation on the characteristics of the 4-joint assembly recorded maximum in-plane translations over a 70 mm range (70% of its diameter), axial translation over 50 mm (27% of its length), and rotations over 120 deg in all three directions. Kinematic modeling and FEM simulations have been carried out on the mechanical behaviors of the joint. A soft manipulator has been produced to verify the practicality of the joint in constructing the soft robotic systems, with the repetitive accuracy and movements demonstrated in an application scenario. The 6DOF TASR joint showed the potential to be implemented in constructing dexterous and lightweight soft robotic systems, with mass-production readiness.

References

1.
Laschi
,
C.
,
Mazzolai
,
B.
, and
Cianchetti
,
M.
,
2016
, “
Soft Robotics: Technologies and Systems Pushing the Boundaries of Robot Abilities
,”
Sci. Rob.
,
1
(
1
), p.
eaah3690
.
2.
Black
,
C. B.
,
Till
,
J.
, and
Rucker
,
D. C.
,
2018
, “
Parallel Continuum Robots: Modeling, Analysis, and Actuation-Based Force Sensing
,”
IEEE Trans. Rob.
,
34
(
1
), pp.
29
47
.
3.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
.
4.
Tsukagoshi
,
H.
,
Kitagawa
,
A.
, and
Segawa
,
M.
,
2001
, “
Active Hose: An Artificial Elephant’s Nose With Maneuverability for Rescue Operation
,”
Proceedings of the 2001 IEEE International Conference on Robotics and Automation
,
Seoul, South Korea
,
May 21–25
, Vol. 3,pp. 2454–2459.
5.
Immega
,
G.
, and
Antonelli
,
K.
,
1995
, “
The KSI Tentacle Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, Vol. 3, pp.
3149
3154
.
6.
McMahan
,
W.
,
Jones
,
B. A.
, and
Walker
,
I. D.
,
2005
, “
Design and Implementation of a Multi-Section Continuum Robot: Air-Octor
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
2578
2585
.
7.
Pritts
,
M. B.
, and
Rahn
,
C. D.
,
2004
, “
Design of an Artificial Muscle Continuum Robot
,”
Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA)
,
New Orleans, LA
,
Apr. 26–May 1
, Vol. 5, pp.
4742
4746
.
8.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I. D.
,
Jones
,
B. A.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C. D.
,
2006
, “
Field Trials and Testing of the OctArm Continuum Manipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
2336
2341
.
9.
Kang
,
R.
,
Branson
,
D. T.
,
Zheng
,
T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2013
, “
Design, Modeling and Control of a Pneumatically Actuated Manipulator Inspired by Biological Continuum Structures
,”
Bioinspir. Biomim.
,
8
(
3
), p.
036008
.
10.
Stilli
,
A.
,
Helge
,
A. W.
, and
Althoefer
,
K.
,
2014
, “
Shrinkable, Stiffness-Controllable Soft Manipulator Based on a Bio-Inspired Antagonistic Actuation Principle
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
2476
2481
.
11.
Grzesiak
,
A.
,
Becker
,
R.
, and
Verl
,
A.
,
2011
, “
The Bionic Handling Assistant: A Success Story of Additive Manufacturing
,”
Assem. Autom.
,
31
(
4
), pp.
329
333
.
12.
Arleo
,
L.
,
Stano
,
G.
,
Percoco
,
G.
, and
Cianchetti
,
M.
,
2021
, “
I-Support Soft Arm for Assistance Tasks: A New Manufacturing Approach Based on 3D Printing and Characterization
,”
Prog. Addit. Manuf.
,
6
(
2
), pp.
243
256
.
13.
Martinez
,
R. V.
,
Branch
,
J. L.
,
Fish
,
C. R.
,
Jin
,
L.
,
Shepherd
,
R. F.
,
Nunes
,
R. M. D.
,
Suo
,
Z.
, and
Whitesides
,
G. M.
,
2013
, “
Robotic Tentacles With Three-Dimensional Mobility Based on Flexible Elastomers
,”
Adv. Mater.
,
25
(
2
), pp.
205
212
.
14.
Marchese
,
A. D.
, and
Rus
,
D.
,
2016
, “
Design, Kinematics, and Control of a Soft Spatial Fluidic Elastomer Manipulator
,”
Int. J. Rob. Res.
,
35
(
7
), pp.
840
869
.
15.
Gong
,
Z.
,
Fang
,
X.
,
Chen
,
X.
,
Cheng
,
J.
,
Xie
,
Z.
,
Liu
,
J.
,
Chen
,
B.
, et al
,
2021
, “
A Soft Manipulator for Efficient Delicate Grasping in Shallow Water: Modeling, Control, and Real-World Experiments
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
449
469
.
16.
Ranzani
,
T.
,
Cianchetti
,
M.
,
Gerboni
,
G.
,
Falco
,
I. D.
, and
Menciassi
,
A.
,
2016
, “
A Soft Modular Manipulator for Minimally Invasive Surgery: Design and Characterization of a Single Module
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
187
200
.
17.
Chen
,
X.
,
Peng
,
J.
,
Zhou
,
J.
,
Chen
,
Y.
,
Wang
,
Y. M.
, and
Wang
,
Z.
,
2017
, “
A Robotic Manipulator Design With Novel Soft Actuators
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
1878
1884
.
18.
Chen
,
X.
,
Yi
,
J.
,
Li
,
J.
,
Zhou
,
J.
, and
Wang
,
Z.
,
2018
, “
Soft-Actuator-Based Robotic Joint for Safe and Forceful Interaction With Controllable Impact Response
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3505
3512
.
19.
Chen
,
X.
,
Duanmu
,
D.
, and
Wang
,
Z.
,
2021
, “
Model-Based Control and External Load Estimation of an Extensible Soft Robotic Arm
,”
Front. Rob. AI
,
7
, p.
586490
.
20.
Su
,
Y.
,
Fang
,
Z.
,
Zhu
,
W.
,
Sun
,
X.
,
Zhu
,
Y.
,
Wang
,
H.
,
Tang
,
K.
,
Huang
,
H.
,
Liu
,
S.
, and
Wang
,
Z.
,
2020
, “
A High-Payload Proprioceptive Hybrid Robotic Gripper With Soft Origamic Actuators
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3003
3010
.
21.
Liu
,
S.
,
Zhu
,
Y.
,
Zhang
,
Z.
,
Fang
,
Z.
,
Tan
,
J.
,
Peng
,
J.
,
Song
,
C.
,
Asada
,
H. H.
, and
Wang
,
Z.
,
2021
, “
Otariidae-Inspired Soft-Robotic Supernumerary Flippers by Fabric Kirigami and Origami
,”
IEEE/ASME Trans. Mechatron.
,
26
(
5
), pp.
2747
2757
.
22.
Liu
,
S.
,
Fang
,
Z.
,
Liu
,
J.
,
Tang
,
K.
,
Luo
,
J.
,
Yi
,
J.
,
Hu
,
X.
, and
Wang
,
Z.
,
2021
, “
A Compact Soft Robotic Wrist Brace With Origami Actuators
,”
Front. Rob. AI
,
8
, p.
614623
.
23.
Cai
,
J.
,
Deng
,
X.
,
Zhang
,
Y.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2016
, “
Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031004
.
24.
Yasuda
,
H.
,
Tachi
,
T.
,
Lee
,
M.
, and
Yang
,
J.
,
2017
, “
Origami-Based Tunable Truss Structures for Non-Volatile Mechanical Memory Operation
,”
Nat. Commun.
,
8
(
1
), p.
962
.
25.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), p.
eaau2835
.
26.
Yi
,
J.
,
Chen
,
X.
,
Song
,
C.
,
Zhou
,
J.
,
Liu
,
Y.
,
Liu
,
S.
, and
Wang
,
Z.
,
2018
, “
Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Inter-Actions
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
114
123
.
27.
Liu
,
J.
,
Wang
,
X.
,
Liu
,
S.
,
Yi
,
J.
,
Wang
,
X.
, and
Wang
,
Z.
,
2022
, “
Vertebraic Soft Robotic Joint Design With Twisting and Antagonism
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
658
665
.
28.
Stewart
,
D.
,
1966
, “
A Platform With Six Degrees of Freedom
,”
Aircr. Eng. Aerosp. Technol.
,
38
(
4
), pp.
30
35
.
29.
Liu
,
X.
,
Wang
,
J.
,
Gao
,
F.
, and
Wang
,
L.
,
2001
, “
On the Design of 6-DOF Parallel Micro-Motion Manipulators
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Maui, HI
,
Oct. 29–Nov. 3
, Vol. 1, pp.
343
348
.
30.
Yang
,
C.
,
He
,
J.
,
Han
,
J.
, and
Liu
,
X.
,
2009
, “
Real-Time State Estimation for Spatial Six-Degree-of-Freedom Linearly Actuated Parallel Robots
,”
Mechatronics
,
19
(
6
), pp.
1026
1033
.
You do not currently have access to this content.