Abstract

Continuum manipulators are a class of robots with many degrees-of-freedom, leading to highly flexible motion with inherent compliance. These attributes make them well suited for manipulation tasks and physical interaction with the environment. A high impact yet challenging field for exploring continuum robot designs is free-floating underwater manipulation with a remotely operated vehicle (ROV). In this article, we propose a modular, reconfigurable, cable-driven continuum arm for free-floating underwater manipulation and present a corresponding kinematics, control, and computation framework. The mechanical design consists of a continuum arm, an actuation unit, and a waterproof enclosure. The kinematics model is introduced as two mappings between three spaces: the joint space, the configuration space, and the task space. The differential kinematics for each mapping is also derived. An electronics system design is proposed for underwater applications, including the communication framework between the topside computer (above surface), on-board computer, and manipulator mechatronics. Experimental validation is presented to demonstrate the robot’s underwater functionality, test the limits of its articulation, and evaluate the arm’s stiffness. Future work includes field testing with an ROV platform and development of advanced controls and planning for manipulation tasks.

References

1.
Hannan
,
M.
, and
Walker
,
I.
,
2003
, “
Kinematics and the Implementation of an Elephant’s Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
2.
Liu
,
Y.
,
Ge
,
Z.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
3.
Yeshmukhametov
,
A.
,
Koganezawa
,
K.
, and
Yamamoto
,
Y.
,
2019
, “
A Novel Discrete Wire-Driven Continuum Robot Arm With Passive Sliding Disc: Design, Kinematics and Passive Tension Control
,”
Robotics
,
8
(
7
), p.
51
.
4.
Zheng
,
T.
,
Branson
,
D. T.
,
Kang
,
R.
,
Cianchetti
,
M.
,
Guglielmino
,
E.
,
Follador
,
M.
,
Medrano-Cerda
,
G. A.
,
Godage
,
I. S.
, and
Caldwell
,
D. G.
,
2012
, “
Dynamic Continuum Arm Model for Use With Underwater Robotic Manipulators Inspired by Octopus Vulgaris
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
5289
5294
.
5.
Zheng
,
T.
,
Branson
,
D. T.
,
Guglielmino
,
E.
,
Kang
,
R.
,
Medrano Cerda
,
G. A.
,
Cianchetti
,
M.
,
Follador
,
M.
,
Godage
,
I. S.
, and
Caldwell
,
D. G.
,
2013
, “
Model Validation of an Octopus Inspired Continuum Robotic Arm for Use in Underwater Environments
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021004
.
6.
Cianchetti
,
M.
,
Follador
,
M.
,
Mazzolai
,
B.
,
Dario
,
P.
, and
Laschi
,
C.
,
2012
, “
Design and Development of a Soft Robotic Octopus Arm Exploiting Embodied Intelligence
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
, pp.
5271
5276
.
7.
Cianchetti
,
M.
,
Calisti
,
M.
,
Margheri
,
L.
,
Kuba
,
M.
, and
Laschi
,
C.
,
2015
, “
Bioinspired Locomotion and Grasping in Water: The Soft Eight-Arm Octopus Robot
,”
Bioinsp. Biom.
,
10
(3), p.
035003
.
8.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1990
, “
An Obstacle Avoidance Algorithm for Hyper-Redundant Manipulators
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Cincinnati, OH
,
May 13–18
, Vol.
1
, pp.
625
631
.
9.
Chirikjian
,
G.
,
1993
, “
General Methods for Computing Hyper-redundant Manipulator Inverse Kinematics
,”
Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’93)
,
Yokohama, Japan
,
July 26–30
, Vol.
2
, pp.
1067
1073
.
10.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
IEEE. Trans. Rob. Autom.
,
10
(
3
), pp.
343
354
.
11.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1992
, “
Kinematically Optimal Hyper-Redundant Manipulator Configurations
,”
Proceedings 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
, Vol.
1
, pp.
415
420
.
12.
Gravagne
,
I.
, and
Walker
,
I.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE. Trans. Rob. Autom.
,
18
(
3
), pp.
263
273
.
13.
Gravagne
,
I.
, and
Walker
,
I.
,
2002
, “
Uniform Regulation of a Multi-Section Continuum Manipulator
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
,
May 11–15
, Vol.
2
, pp.
1519
1524
.
14.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE International Conference on Robotics and Automation, 2004
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
1
, pp.
351
357
.
15.
Conrad
,
B.
, and
Zinn
,
M.
,
2015
, “
Closed Loop Task Space Control of an Interleaved Continuum-Rigid Manipulator
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1743
1750
.
16.
Conrad
,
B. L.
, and
Zinn
,
M. R.
,
2017
, “
Interleaved Continuum-Rigid Manipulation: An Approach to Increase the Capability of Minimally Invasive Surgical Systems
,”
IEEE/ASME Trans. Mech.
,
22
(
1
), pp.
29
40
.
17.
Simaan
,
N.
,
Yasin
,
R. M.
, and
Wang
,
L.
,
2018
, “
Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics
,”
Annual Rev. Control, Rob., Auto. Syst.
,
1
, pp.
465
490
.
18.
McMahan
,
W.
,
Chitrakaran
,
V.
,
Csencsits
,
M.
,
Dawson
,
D.
,
Walker
,
I.
,
Jones
,
B.
,
Pritts
,
M.
,
Dienno
,
D.
,
Grissom
,
M.
, and
Rahn
,
C.
,
2006
, “
Field Trials and Testing of the Octarm Continuum Manipulator
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation ICRA 2006
,
Orlando, FL
,
May 15–19
, pp.
2336
2341
.
19.
Rone
,
W. S.
,
Saab
,
W.
, and
Ben-Tzvi
,
P.
,
2018
, “
Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041001
.
20.
Rone
,
W. S.
,
Saab
,
W.
,
Kumar
,
A.
, and
Ben-Tzvi
,
P.
,
2019
, “
Controller Design, Analysis, and Experimental Validation of a Robotic Serpentine Tail to Maneuver and Stabilize a Quadrupedal Robot
,”
ASME J. Dyn. Syst. Meas. Control.
,
141
(
8
), p.
081002
.
21.
Liu
,
J.
,
Iacoponi
,
S.
,
Laschi
,
C.
,
Wen
,
L.
, and
Calisti
,
M.
,
2020
, “
Underwater Mobile Manipulation: A Soft Arm on a Benthic Legged Robot
,”
IEEE Rob. Auto. Magaz.
,
27
(
4
), pp.
12
26
.
22.
Gong
,
Z.
,
Chen
,
B.
,
Liu
,
J.
,
Fang
,
X.
,
Liu
,
Z.
,
Wang
,
T.
, and
Wen
,
L.
,
2019
, “
An Opposite-Bending-and-Extension Soft Robotic Manipulator for Delicate Grasping in Shallow Water
,”
Front. Rob. AI
,
6
, p.
00026
.
23.
Simetti
,
E.
,
Casalino
,
G.
,
Torelli
,
S.
,
Sperindé
,
A.
, and
Turetta
,
A.
,
2014
, “
Underwater Floating Manipulation for Robotic Interventions
,”
IFAC Proc. Vol.
,
47
, pp.
3358
3363
.
24.
Khatib
,
O.
,
Yeh
,
X.
,
Brantner
,
G.
,
Soe
,
B.
,
Kim
,
B.
,
Ganguly
,
S.
,
Stuart
,
H.
,
Wang
,
S.
,
Cutkosky
,
M.
,
Edsinger
,
A.
,
Mullins
,
P.
,
Barham
,
M.
,
Voolstra
,
C. R.
,
Salama
,
K. N.
,
L’Hour
,
M.
, and
Creuze
,
V.
,
2016
, “
Ocean One: A Robotic Avatar for Oceanic Discovery
,”
IEEE Rob. Auto. Magaz.
,
23
(
4
), pp.
20
29
.
25.
Manley
,
J. E.
,
Halpin
,
S.
,
Radford
,
N.
, and
Ondler
,
M.
,
2018
, “
Aquanaut: A New Tool for Subsea Inspection and Intervention
,” OCEANS 2018 MTS/IEEE, Charleston, SC, Oct. 22–25, pp.
1
4
.
26.
Wang
,
L.
, and
Simaan
,
N.
,
2019
, “
Geometric Calibration of Continuum Robots: Joint Space and Equilibrium Shape Deviations
,”
IEEE Trans. Rob.
,
35
(
2
), pp.
387
402
.
27.
Simaan
,
N.
,
Xu
,
K.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Flint
,
P.
, and
Taylor
,
R.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Inter. J. Rob. Res. Spec. Issue Med. Rob. (Special Issue Med. Rob.)
,
28
(
9
), pp.
1134
1153
.
28.
Ma
,
R. R.
,
Odhner
,
L. U.
, and
Dollar
,
A. M.
,
2013
, “
A Modular, Open-Source 3d Printed Underactuated Hand
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
2737
2743
.
29.
Ma
,
R.
, and
Dollar
,
A.
,
2017
, “
Yale Openhand Project: Optimizing Open-Source Hand Designs for Ease of Fabrication and Adoption
,”
IEEE Rob. Auto. Magaz.
,
24
(
1
), pp.
32
40
.
30.
Hirose
,
S.
, and
Ma
,
S.
,
1991
, “
Coupled Tendon-Driven Multijoint Manipulator
,”
Proceedings 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
, Vol.
2
, pp.
1268
1275
.
31.
Na
,
Y.-m.
,
Lee
,
H.-s.
, and
Park
,
J.-k.
,
2020
, “
Fabrication and Experiment of an Automatic Continuum Robot System Using Image Recognition
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011017
.
32.
Liu
,
Y.
, and
Ben-Tzvi
,
P.
,
2020
, “
Design, Analysis, and Integration of a New Two-Degree-of-Freedom Articulated Multi-Link Robotic Tail Mechanism
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021101
.
33.
Paul
,
R. P.
,
1981
,
Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators
,
MIT Press
,
Cambridge, MA
.
34.
Mooring
,
B. W.
,
Roth
,
Z. S.
, and
Driels
,
M. R.
,
1991
,
Fundamentals of Manipulator Calibration
,
Wiley-Interscience
,
Hoboken, NJ
.
You do not currently have access to this content.