Abstract

Cable-driven parallel robots (CDPRs) are a kind of mechanism with large workspace, fast response, and low inertia. However, due to the existence of various sources of error, it is unavoidable to bring uncertain cable lengths and lead to pose errors of the end-effector. The inverse kinematic model of a CDPR for picking up medicines is established by considering radii of fixed pulleys. The influence of radii of fixed pulleys on errors of cable lengths is explored. Error transfer model of the CDPR is constructed, and uncertain sources of cable lengths are analyzed. Based on evidence theory and error transfer model, an evidence theory-based uncertainty analysis method (ETUAM) is presented. The structural performance function for kinematic response is derived based on the error transfer model. Belief and plausibility measures of joint focal elements under the given threshold are obtained. Kinematic error simulations show that errors of cable lengths become larger with the increase of radii of fixed pulleys. Compared with the vertex method and Monte Carlo method, numerical examples demonstrate the accuracy and efficiency of the ETUAM when it comes to the kinematic uncertainty analysis of the CDPR.

References

1.
Hong
,
H.
,
Ali
,
J.
, and
Ren
,
L.
,
2018
, “
A Review on Topological Architecture and Design Methods of Cable-Driven Mechanism
,”
Adv. Mech. Eng.
,
10
(
5
), p.
1687814018774186
.
2.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031009
.
3.
Pannequin
,
R.
,
Jouaiti
,
M.
,
Boutayeb
,
M.
,
Lucas
,
P.
, and
Martinez
,
D.
,
2020
, “
Automatic Tracking of Free-Flying Insects Using a Cable-Driven Robot
,”
Sci. Rob.
,
5
(
43
), p.
eabb2890
.
4.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “
Design and Analysis of a Cable-Driven Articulated Rehabilitation System for Gait Training
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051018
.
5.
Shao
,
Z. F.
,
Xie
,
G. Q.
,
Zhang
,
Z. K.
, and
Wang
,
L. P.
,
2021
, “
Design and Analysis of the Cable-Driven Parallel Robot for Cleaning Exterior Wall of Buildings
,”
Int. J. Adv. Rob. Syst.
,
18
(
1
), p.
1729881421990313
.
6.
Zi
,
B.
,
Wang
,
N.
,
Qian
,
S.
, and
Bao
,
K. L.
,
2019
, “
Design, Stiffness Analysis and Experimental Study of a Cable-Driven Parallel 3D Printer
,”
Mech. Mach. Theory
,
132
, pp.
207
222
.
7.
Zhao
,
M.
,
Vrielink
,
T. J. C. O.
,
Kogkas
,
A. A.
,
Runciman
,
M. S.
,
Elson
,
D. S.
, and
Mylonas
,
G. P.
,
2020
, “
LaryngoTORS: A Novel Cable-Driven Parallel Robotic System for Transoral Laser Phonosurgery
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1516
1523
.
8.
Zi
,
B.
,
Zhou
,
B.
, and
Zhu
,
W.
,
2019
, “
Modified First-Order Compound Function-Based Interval Perturbation Method for Luffing Angular Response of Dual Automobile Crane System With Interval Variables
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041013
.
9.
Li
,
H.
, and
Yao
,
R.
,
2014
, “
Optimal Orientation Planning and Control Deviation Estimation on Fast Cable-Driven Parallel Robot
,”
Adv. Mech. Eng.
,
6
, p.
716097
.
10.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W. W.
, and
Xu
,
Q. S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
66
.
11.
Paty
,
T.
,
Binaud
,
N.
,
Caro
,
S.
, and
Segonds
,
S.
,
2021
, “
Cable-Driven Parallel Robot Modelling Considering Pulley Kinematics and Cable Elasticity
,”
Mech. Mach. Theory
,
159
, p.
104263
.
12.
Kieu
,
D.-V. N.
, and
Huang
,
S.-C.
,
2020
, “
Dynamic Creep Phenomenon on Polymer Cable With Non-Linear Characteristics for Cable-Driven Parallel Robots
,”
2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)
,
Yunlin, Taiwan
,
Oct. 23–25
, pp.
378
380
.
13.
Seo
,
M.
,
Yoo
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2020
, “
Dual Ascender Robot With Position Estimation Using Angle and Length Sensors
,”
IEEE Sensors J.
,
20
(
13
), pp.
7422
7432
.
14.
Notash
,
L.
,
2017
, “
Wrench Accuracy for Parallel Manipulators and Interval Dependency
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011008
.
15.
Mottola
,
G.
,
Gosselin
,
C.
, and
Carricato
,
M.
,
2019
, “
Effect of Actuation Errors on a Purely-Translational Spatial Cable-Driven Parallel Robot
,”
9th IEEE Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (IEEE-CYBER)
,
Suzhou, China
,
July 29–Aug. 2
, pp.
701
707
.
16.
Wu
,
G. L.
,
Bai
S. P.
,
Kepler
,
J. A.
, and
Caro
,
S.
,
2012
, “
Error Modeling and Experimental Validation of a Planar 3-ppr Parallel Manipulator With Joint Clearances
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041008
.
17.
Korayem
,
M. H.
,
Yousefzadeh
,
M.
, and
Kian
,
S.
,
2018
, “
Precise End-Effector Pose Estimation in Spatial Cable-Driven Parallel Robots With Elastic Cables Using a Data Fusion Method
,”
Measurement
,
130
, pp.
177
190
.
18.
Zavatta
,
M.
,
Chianura
,
M.
,
Pott
,
A.
, and
Carricato
,
M.
,
2020
, “
A Vision-Based Referencing Procedure for Cable-Driven Parallel Manipulators
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
044502
.
19.
Liao
,
H. B.
,
Liu
,
K.
,
Zhang
,
X. Y.
,
Chen
,
Z. K.
, and
Yin
,
K.
,
2020
, “
Dimensional Parameters Design for Flexible Cable Drive Parallel Mechanism
,”
J. Phys. Conf. Ser.
,
1635
(
1
), p.
012039
.
20.
Vieira
,
H. L.
,
Fontes
,
J. V. C.
,
Beck
,
A. T.
, and
da Silva
,
M. M.
,
2019
, “
Reliable and Failure-Free Workspaces for Motion Planning Algorithms for Parallel Manipulators Under Geometrical Uncertainties
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021005
.
21.
Ren
,
B.
,
Lu
,
Z. Z.
, and
Zhou
,
C. C.
,
2014
, “
A Novel Method for Importance Measure Analysis in the Presence of Epistemic and Aleatory Uncertainties
,”
Chin. J. Aeronaut.
,
27
(
3
), pp.
568
576
.
22.
Awadallah
,
S. K. E.
, and
Milanovic
,
J. V.
,
2013
, “
Quantification of Aleatory and Epistemic Uncertainty in Bulk Power System Reliability Evaluation
,”
2013 IEEE Grenoble PowerTech Conference
,
Grenoble, France
,
June 16–20
, pp.
1
6
.
23.
Zi
,
B.
, and
Zhou
,
B.
,
2016
, “
A Modified Hybrid Uncertain Analysis Method for Dynamic Response Field of the LSOAAC With Random and Interval Parameters
,”
J. Sound Vib.
,
374
, pp.
111
137
.
24.
Notash
,
L.
,
2017
, “
On the Solutions of Interval Systems for Under-Constrained and Redundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061009
.
25.
Yang
,
J.
,
Xu
,
T. H.
, and
Zhao
,
F.
,
2018
, “
Modified Uncertainty Measure of Rough Fuzzy Sets From the Perspective of Fuzzy Distance
,”
Math. Probl. Eng.
,
2018
, p.
40160905
.
26.
Zhang
,
Z.
,
Jiang
,
C.
,
Han
,
X.
,
Hu
,
D.
, and
Yu
,
S.
,
2014
, “
A Response Surface Approach for Structural Reliability Analysis Using Evidence Theory
,”
Adv. Eng. Software
,
69
, pp.
37
45
.
27.
Jiang
,
C.
,
Zhang
,
Z.
,
Han
,
X.
, and
Liu
,
J.
,
2013
, “
A Novel Evidence-Theory-Based Reliability Analysis Method for Structures With Epistemic Uncertainty
,”
Comput. Struct.
,
129
, pp.
1
12
.
28.
Gao
,
R.
,
Yin
,
S.
, and
Xiong
,
F.
,
2019
, “
Response Analysis and Reliability-Based Design Optimization of Structural-Acoustic System Under Evidence Theory
,”
Struct. Multidiscipl. Optim.
,
59
(
3
), pp.
959
975
.
29.
Cao
,
L. X.
,
Liu
,
J.
,
Jiang
,
C.
,
Wu
,
Z. T.
, and
Zhang
,
Z.
,
2020
, “
Evidence-Based Structural Uncertainty Quantification by Dimension Reduction Decomposition and Marginal Interval Analysis
,”
ASME J. Mech. Des.
,
142
(
5
), p.
051701
.
30.
Yin
,
S. W.
,
Yu
,
D. J.
,
Yin
,
H.
,
Lu
,
H.
, and
Xia
,
B. Z.
,
2017
, “
Hybrid Evidence Theory-Based Finite Element/Statistical Energy Analysis Method for Mid-Frequency Analysis of Built-Up Systems With Epistemic Uncertainties
,”
Mech. Syst. Signal Process
,
93
, pp.
204
224
.
31.
Dalian
,
Y.
,
Fanyu
,
Z.
,
Jingjing
,
M.
,
Hongxian
,
Z.
,
Renjie
,
L.
, and
Jie
,
T.
,
2021
, “
Dual-Rotor Misalignment Fault Quantitative Identification Based on DBN and Improved D-S Evidence Theory
,”
Mech. Ind.
,
22
, p.
24
.
32.
Tian
,
L.
,
Guo
,
H. Y.
,
Zhou
,
X. Y.
, and
Wang
,
Y. S.
,
2018
, “
Structural Damage Detection Based on Cloud Model and Dempster-Shafer Evidence Theory
,”
J. Vibroeng.
,
20
(
2
), pp.
909
922
.
33.
Tang
,
J.
,
Wu
,
Z. G.
, and
Yang
,
C.
,
2015
, “
Epistemic Uncertainty Quantification in Flutter Analysis Using Evidence Theory
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
164
171
.
34.
Chen
,
L.
,
Diao
,
L.
, and
Sang
,
J.
,
2018
, “
Weighted Evidence Combination Rule Based on Evidence Distance and Uncertainty Measure: An Application in Fault Diagnosis
,”
Math. Probl. Eng.
,
2018
, p.
5858272
.
35.
Liu
,
D.
,
2020
, “
Prediction of Network Security Based on DS Evidence Theory
,”
ETRI J.
,
42
(
5
), pp.
802
807
.
36.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2021
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
.
37.
Cao
,
L. X.
,
Liu
,
J.
,
Wang
,
Q. Y.
,
Jiang
,
C.
, and
Zhang
,
L. Y.
,
2019
, “
An Efficient Structural Uncertainty Propagation Method Based on Evidence Set Analysis
,”
Eng. Struct.
,
194
, pp.
26
35
.
38.
Zhang
,
Z.
,
Jiang
,
C.
,
Wang
,
G. G.
, and
Han
,
X.
,
2015
, “
First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
,”
Reliab. Eng. Syst. Saf.
,
137
, pp.
40
49
.
You do not currently have access to this content.