Abstract

Sensitivity analysis of manipulators aims at studying the influence of variations in its own geometric parameters on its performance. This information is useful for evaluating the position error of the end-effector as well as for the synthesis of tolerances. Indeed, the synthesis of tolerances is a very important issue in the design and manufacturing of robot manipulators. In this paper, a sequential procedure for modeling, dimensioning, and tolerance synthesis of the Parallel Kinematic Manipulator (PKM) PAR2 is proposed. For optimal dimensional design, an approach based on the optimization of the workspace is proposed, taking into account several constraints, followed by a numerical matrix analysis-based deterministic method for sensitivity analysis whose performance is studied in terms of accuracy. To calculate the optimal dimensional tolerances, a new tolerance synthesis method is used. The effect of geometric tolerance on accuracy is analyzed.

References

1.
Taguchi
,
G.
,
1978
, “
Off-Line and On-Line Quality Control Systems
,”
Proceedings of International Conferences on Quality Control
,
Tokyo, Japan
, pp.
B4-1
5
.
2.
Al-Widyan
,
K.
,
Angeles
,
J.
, and
Cervantes-Sanchez
,
J.
,
2003
, “A Model-Based Framework for Robust Design,”
Recent Advances in Integrated Design and Manufacturing in Mechanical Engineering
,
Gogu
,
G.
,
Coutellier
,
D.
,
Chedmail
,
P.
, and
Ray
,
P.
, eds.,
Springer
,
Dordrecht
, pp.
431
442
.
3.
Lian
,
B.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
Parameter Sensitivity Analysis of a 5-dof Parallel Manipulator
,”
Rob. Comput. Int. Manuf.
,
46
(
C
), pp.
1
14
.
4.
Sun
,
T.
, and
Lian
,
B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
5.
Sun
,
T.
,
Lian
,
B.
,
Song
,
Y.
, and
Feng
,
L.
,
2019
, “
Elastodynamic Optimization of a 5-dof Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE/ASME Trans. Mech.
,
24
(
1
), pp.
315
325
.
6.
Lian
,
B.
,
Wang
,
X. V.
, and
Wang
,
L.
,
2019
, “
Static and Dynamic Optimization of a Pose Adjusting Mechanism Considering Parameter Changes During Construction
,”
Rob. Comput. Int. Manuf.
,
59
, pp.
267
277
.
7.
Ting
,
K.-L.
, and
Long
,
Y.
,
1996
, “
Performance Quality and Tolerance Sensitivity of Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
144
150
.
8.
Zhu
,
J.
, and
Ting
,
K.-L.
,
2000
, “
Performance Distribution Analysis and Robust Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
11
17
.
9.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
,
2005
, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
86
94
.
10.
Caro
,
S.
,
2004
, “
Conception robuste de mécanismes
,”
Ph.D. thesis
,
IRCCyN - Institut de Recherche en Communications et en Cybernétique de Nantes
, Nantes, France.
11.
Caro
,
S.
,
Wenger
,
P.
,
Bennis
,
F.
, and
Chablat
,
D.
,
2005
, “
Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
392
402
.
12.
Rout
,
B.
, and
Mittal
,
R.
,
2006
, “
Tolerance Design of Robot Parameters Using Taguchi Method
,”
Mech. Syst. Signal Process.
,
20
(
8
), pp.
1832
1852
.
13.
Rout
,
B. K.
, and
Mittal
,
R.
,
2007
, “
Tolerance Design of Manipulator Parameters Using Design of Experiment Approach
,”
Struct. Multidiscipl. Optim.
,
34
, pp.
445
462
.
14.
Rout
,
B.
, and
Mittal
,
R.
,
2008
, “
Optimal Manipulator Parameter Tolerance Selection Using Evolutionary Optimization Technique
,”
Eng. Appl. Artif. Intell.
,
21
(
4
), pp.
509
524
.
15.
Kim
,
J.
,
Song
,
W.-J.
, and
Kang
,
B.-S.
,
2010
, “
Stochastic Approach to Kinematic Reliability of Open-Loop Mechanism With Dimensional Tolerance
,”
Appl. Math. Model.
,
34
(
5
), pp.
1225
1237
.
16.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2018
, “
Multi-Objective Optimization of Parallel Tracking Mechanism Considering Parameter Uncertainty
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041006
.
17.
Huang
,
X.
, and
Zhang
,
Y.
,
2010
, “
Robust Tolerance Design for Function Generation Mechanisms With Joint Clearances
,”
Mech. Mach. Theory
,
45
(
9
), pp.
1286
1297
.
18.
Goldsztejn
,
A.
,
Caro
,
S.
, and
Chabert
,
G.
,
2015
, “
A New Methodology for Tolerance Synthesis of Parallel Manipulators
,”
Proceedings of the 14th IFToMM World Congress
, pp.
184
193
.
19.
Goldsztejn
,
A.
,
Caro
,
S.
, and
Chabert
,
G.
,
2016
, “
A Three-Step Methodology for Dimensional Tolerance Synthesis of Parallel Manipulators
,”
Mech. Mach. Theory
,
105
, pp.
213
234
.
20.
Trang Thanh Trung
,
L. W. G.
, and
Long
,
P. T.
,
2017
, “
Tolerance Design of Robot Parameters Using Generalized Reduced Gradient Algorithm
,”
Int. J. Mater. Mech. Manuf.
,
5
(
2
), pp.
96
105
.
21.
ASME
,
1994
, “
Dimensioning and Tolerancing: ASME Y14.5M-1994 (Engineering Drawing and Related Documentation Practices)
.”
22.
Company
,
O.
,
Pierrot
,
F.
,
Krut
,
S.
,
Baradat
,
C.
, and
Nabat
,
V.
,
2011
, “
Par2: A Spatial Mechanism for Fast Planar Two-Degree-of-Freedom Pick-and-Place Applications.
,”
Meccanica
,
46
, pp.
239
248
.
23.
Natal
,
G. S.
,
Chemori
,
A.
, and
Pierrot
,
F.
,
2016
, “
Nonlinear Control of Parallel Manipulators for Very High Accelerations Without Velocity Measurement: Stability Analysis and Experiments on Par2 Parallel Manipulator
,”
Robotica
,
34
(
1
), pp.
43
70
.
24.
Kelaiaia
,
R.
,
Zaatri
,
A.
,
Company
,
O.
, and
Chikh
,
L.
,
2016
, “
Some Investigations Into the Optimal Dimensional Synthesis of Parallel Robots.
,”
Int. J. Adv. Manuf. Technol.
,
83
, pp.
1525
1538
.
25.
Baradat
,
C.
,
Nabat
,
V.
,
Krut
,
S.
,
Company
,
O.
, and
Pierrot
,
F.
,
2009
, “
Par2: A Spatial Mechanism for Fast Planar, 2-dof, Pick-and-Place Applications
,”
Proceedings of the Second International Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
,
Montpellier, France
,
September
, p.
10
.
26.
Pierrot
,
F.
,
Baradat
,
C.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Gouttefarde
,
M.
,
2009
, “
Above 40g Acceleration for Pick-and-Place With a New 2-dof PKM
,”
2009 IEEE International Conference on Robotics and Automation
, pp.
1794
1800
.
27.
Lin
,
J.
,
1976
, “
Multiple-Objective Problems: Pareto-Optimal Solutions by Method of Proper Equality Constraints
,”
IEEE Trans. Autom. Contr.
,
21
(
5
), pp.
641
650
.
28.
Gosselin
,
C.
, and
Angeles
,
J.
,
1991
, “
A Global Performance Index for the Kinematic Optimization of Robotic Manipulators
,”
ASME J. Mech. Des.
,
113
(
3
), pp.
220
226
.
29.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of a Linear Delta Parallel Robot
,”
Mech. Mach. Theory
,
50
, pp.
159
178
.
30.
Merlet
,
J.
,
2006
,
Parallel Robots
, 2nd ed., Vol.
128
,
Springer Netherlands
.
31.
Briot
,
S.
,
Caro
,
S.
, and
Germain
,
C.
,
2017
, “
Design Procedure for a Fast and Accurate Parallel Manipulator
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061012
.
32.
Lee
,
M.-Y.
,
Erdman
,
A. G.
, and
Faik
,
S.
,
1992
, “
A Generalized Performance Sensitivity Synthesis Methodology for Four-Bar Mechanisms
,”
22nd Biennial Mechanisms Conference: Mechanism Design and Synthesis of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
1
4
.
33.
Parkinson
,
A.
,
1995
, “
Robust Mechanical Design Using Engineering Models
,”
ASME J. Vib. Acoust.
,
117
(
B
), pp.
48
54
.
34.
He
,
J.
,
1991
, “
Tolerancing for Manufacturing Via Cost Minimization
,”
Int. J. Mach. Tools Manuf.
,
31
(
4
), pp.
455
470
.
You do not currently have access to this content.