Abstract

This paper demonstrates a novel geometric modeling and computational method of the family of spatial parallel mechanisms (PMs) with 3-R(P)S structure for direct kinematic analysis based on the point pair relationship. The point pair relationship, which is derived from the framework of conformal geometric algebra (CGA), consists of the relationship between the point and the point pair and two point pairs. The first research is on the distance relationship between the point and the point pair. Second, the derivation of the distance relationship between two point pairs is based on the aforementioned result, which shows the mathematical homogeneity. Third, two formulations for a point of the point pairs that satisfy the distance relationship between two point pairs are reduced. Fourth, the point pair relationship is applied to solve the direct kinematic analysis of the spatial parallel mechanism with 3-R(P)S structure. Finally, four numerical examples are provided to verify the validity of the proposed algorithm. Overall, the proposed method can be generalized for the direct kinematics of a series of spatial parallel mechanisms with 3-R(P)S structure.

References

1.
Gough
,
V. E.
,
1956
, “
Contribution to Discussion of Papers on Research in Automobile Stability, Control and Tyre Performance
,”
Proc. Automot. Div. Inst. Mech. Eng.
,
171
, pp.
392
394
.
2.
Stewart
,
D.
,
1965
, “
A Platform With Six Degree of Freedom
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
180
(
15
), pp.
371
386
.
3.
Merlet
,
J. P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer
,
Netherlands
, pp.
113
132
.
4.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
.
5.
Saafi
,
H.
,
Laribi
,
M. A.
, and
Zeghloul
,
S.
,
2017
, “
Optimal Torque Distribution for a Redundant 3-RRR Spherical Parallel Manipulator Used as a Haptic Medical Device
,”
Rob. Auton. Syst.
,
89
, pp.
40
50
.
6.
Hess-Coelho
,
T. A.
,
2007
, “
A Redundant Parallel Spherical Mechanism for Robotic Wrist Applications
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
891
895
.
7.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
, pp.
135
150
.
8.
Liu
,
T.
,
Hu
,
Y.
,
Xu
,
H.
,
Wang
,
Q.
, and
Du
,
W.
,
2019
, “
A Novel Vectored Thruster Based on 3-RPS Parallel Manipulator for Autonomous Underwater Vehicles
,”
Mech. Mach. Theory
,
133
, pp.
646
672
.
9.
Du
,
Y.
,
Li
,
R.
,
Li
,
D.
, and
Bai
,
S.
,
2017
, “
An Ankle Rehabilitation Robot Based on 3-RRS Spherical Parallel Mechanism
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
1
8
.
10.
Tsai
,
M. S.
,
Shiau
,
T. N.
,
Tsai
,
Y. J.
, and
Chang
,
T. H.
,
2003
, “
Direct Kinematic Analysis of a 3-PRS Parallel Mechanism
,”
Mech. Mach. Theory
,
38
(
1
), pp.
71
83
.
11.
Carretero
,
J. A.
,
Podhorodeski
,
R. P.
,
Nohon
,
M. A.
, and
Gosselin
,
C. M.
,
2000
, “
Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
1
), pp.
17
24
.
12.
Clavel
,
R.
,
1988
, “
DELTA, a Fast Robot With Parallel Geometry
,”
Proceedings of 18th International Symposium on Industrial Robots
,
Lausanne, Switzerland
,
Jan. 1
, pp.
91
100
.
13.
Buruncuk
,
K.
, and
Tokad
,
Y.
,
1999
, “
On the Kinematics of a 3-DOF Stewart Platform
,”
J. Rob. Syst.
,
16
(
2
), pp.
105
118
.
14.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
(
5
), pp.
161
176
.
15.
Mamidi
,
T. K.
,
Baskar
,
A.
, and
Bandyopadhyay
,
S.
,
2017
, “
A Novel Geometric Analysis of the Kinematics of the 3-RPS Manipulator
,”
Computational Kinematics, Mechanisms and Machine Science
, Vol.
50
, pp.
484
490
.
16.
Ruggiu
,
M.
,
2009
, “
Position Analysis, Workspace and Optimization of a 3-PPS Spatial Manipulator
,”
ASME J. Mech. Des.
,
131
(
5
), pp.
0510101
0510109
.
17.
Li
,
Q.
,
Chen
,
Q.
,
Wu
,
C.
, and
Huang
,
Z.
,
2013
, “
Geometrical Distribution of Rotational Axes of 3-[P][S] Parallel Mechanisms
,”
Mech. Mach. Theory
,
65
, pp.
46
57
.
18.
Gallardo-Alvarado
,
J.
,
Aguilar-Nájera
,
C. R.
,
Casique-Rosas
,
L.
,
Rico-Martínez
,
J. M.
, and
Islam
,
M. N.
,
2008
, “
Kinematics and Dynamics of 2(3-RPS) Manipulators by Means of Screw Theory and the Principle of Virtual Work
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1281
1294
.
19.
Zhan
,
T. S.
, and
Kao
,
C. C.
,
2010
, “
Modified PSO Method for Robust Control of 3RPS Parallel Manipulators
,”
Math. Probl. Eng.
,
2010
(
1
), pp.
242
256
.
20.
Nurahmi
,
L.
,
Schadlbauer
,
J.
,
Caro
,
S.
,
Husty
,
M.
, and
Wenger
,
P.
,
2015
, “
Kinematic Analysis of the 3-RPS Cube Parallel Manipulator
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011008
.
21.
Li
,
H.
,
Hestenes
,
D.
, and
Rockwood
,
A.
,
2001
, “Generalized Homogenous Coordinates for Computational Geometry,”
Geometric Computing With Clifford Algebras
,
Springer
,
Berlin Heidelberg
, pp.
27
59
.
22.
Li
,
H.
,
2005
, “
Conformal Geometric Algebra–A New Framework for Computational Geometry
,”
J. Comput.-Aided Des. Comput. Graph.
,
17
(
11
), pp.
2383
2393
.
23.
Rosenhahn
,
B.
, and
Sommer
,
G.
,
2005
, “
Pose Estimation in Conformal Geometric Algebra Part I: The Stratification of Mathematical Spaces
,”
J. Math. Imaging Vision
,
22
(
1
), pp.
27
48
.
24.
Hildenbrand
,
D.
,
Fontijne
,
D.
,
Perwass
,
C.
, and
Dorst
,
L.
,
2004
, “Geometric Algebra and Its Application to Computer Graphics,” Euro Graphics 2004 Tutorial.
25.
John A
,
V.
,
2008
,
Geometric Algebra for Computer Graphics
,
Springer
,
Berlin
.
26.
Hildenbrand
,
D.
,
2005
, “
Geometric Computing in Computer Graphics Using Conformal Geometric Algebra
,”
Comput. Graph.
,
29
(
5
), pp.
795
803
.
27.
Zamora
,
J.
, and
Bayro-Corrochano
,
E.
,
2004
, “
Inverse Kinematics, Fixation
and
Grasping Using Conformal Geometric Algebra
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Sendai, Japan
,
Sept. 28–Oct. 2
, Vol.
4
, No.
11
, pp.
3841
3846
.
28.
Bayro-Corrochano
,
E.
, and
Zamora-Esquivel
,
J.
,
2007
, “
Differential and Inverse Kinematics of Robot Devices Using Conformal Geometric Algebra
,”
Robotica
,
25
(
1
), pp.
43
61
.
29.
Hildenbrand
,
D.
,
Zamora
,
J.
, and
Bayro-Corrochano
,
E.
,
2008
, “
Inverse Kinematics Computation in Computer Graphics and Robotics Using Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
18
(
3–4
), pp.
699
713
.
30.
Kim
,
J. S.
,
Jeong
,
Y. H.
, and
Park
,
J. H.
,
2015
, “
Inverse Kinematics and Geometric Singularity Analysis of a 3-SPS/S Redundant Motion Mechanism Using Conformal Geometric Algebra
,”
Mech. Mach. Theory
,
90
, pp.
23
36
.
31.
Kleppe
,
A.
, and
Egeland
,
O.
,
2016
, “
Inverse Kinematics for Industrial Robots Using Conformal Geometric Algebra
,”
Model. Identif. Control
,
37
(
1
), pp.
63
75
.
32.
Tørdal
,
S. S.
,
Hovland
,
G.
, and
Tyapin
,
I.
,
2017
, “
Efficient Implementation of Inverse Kinematics on a 6-DOF Industrial Robot Using Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
(
3
), pp.
2067
2082
.
33.
Hrdina
,
J.
,
Návrat
,
A.
, and
Vašík
,
P.
,
2018
, “
Notes on Planar Inverse Kinematics Based on Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
28
(
3
), p.
71
.
34.
Lian
,
B.
,
2018
, “
Geometric Error Modeling of Parallel Manipulators Based on Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
28
(
1
), p.
30
.
35.
Song
,
Y.
,
Han
,
P.
, and
Wang
,
P.
,
2018
, “
Type Synthesis of 1T2R and 2R1 T Parallel Mechanisms Employing Conformal Geometric Algebra
,”
Mech. Mach. Theory
,
121
, pp.
475
486
.
36.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
Type Synthesis of Parallel Tracking Mechanism With Varied Axes by Modeling Its Finite Motions Algebraically
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
054504
.
37.
Tanev
,
T. K.
,
2006
, “Singularity Analysis of a 4-D of Parallel Manipulator Using Geometric Algebra,”
Advances in Robot Kinematics: Mechanism and Motion
,
Springer
,
Netherlands
, pp.
275
284
.
38.
Tanev
,
T. K.
,
2008
, “Geometric Algebra Approach to Singularity of Parallel Manipulators With Limited Mobility,”
Advances in Robot Kinematics: Analysis and Design
,
Springer
,
Netherlands
, pp.
39
48
.
39.
Huo
,
X.
,
Sun
,
T.
, and
Song
,
Y.
,
2017
, “
A Geometric Algebra Approach to Determine Motion/Constraint, Mobility and Singularity of Parallel Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
273
293
.
40.
Huo
,
X.
, and
Song
,
Y.
,
2018
, “
Finite Motion Analysis of Parallel Mechanisms With Parasitic Motions Based on Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
28
(
1
), p.
21
.
41.
Huo
,
X.
,
Sun
,
T.
,
Song
,
Y.
,
Qi
,
Y.
, and
Wang
,
P.
,
2017
, “
An Analytical Approach to Determine Motions/Constraints of Serial Kinematic Chains Based on Clifford Algebra
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
7
), pp.
1324
1338
.
42.
Hrdina
,
J.
,
Návrat
,
A.
,
Vašík
,
P.
, and
Matoušek
,
R.
,
2017
, “
CGA-Based Robotic Snake Control
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
621
632
.
43.
Hrdina
,
J.
,
Návrat
,
A.
,
Vašík
,
P.
, and
Matoušek
,
R.
,
2017
, “
Geometric Control of the Trident Snake Robot Based on CGA
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
633
645
.
44.
Hrdina
,
J.
,
Návrat
,
A.
, and
Vašík
,
P.
,
2016
, “
Control of 3-Link Robotic Snake Based on Conformal Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
26
(
3
), pp.
1069
1080
.
45.
Zhang
,
Y.
,
Liu
,
X.
,
Wei
,
S.
,
Wang
,
Y.
,
Zhang
,
X.
,
Zhang
,
P.
, and
Liang
,
C.
,
2018
, “
A Geometric Modeling and Computing Method for Direct Kinematic Analysis of 6-4 Stewart Platforms
,”
Math. Probl. Eng.
,
2018
(Part 2)
, pp.
1
9
.
46.
Zhang
,
Y.
,
Wei
,
S.
,
Li
,
D.
, and
Liao
,
Q.
,
2018
, “
Geometric Modeling and Free-Elimination Computing Method for the Forward Kinematics Analysis of Planar Parallel Manipulators
,”
Chin. J. Mech. Eng.
,
54
(
19
), pp.
27
33
.
47.
Zhang
,
Y.
,
Kong
,
X.
,
Wei
,
S.
,
Li
,
D.
, and
Liao
,
Q.
,
2018
, “
CGA-Based Approach to Direct Kinematics of Parallel Mechanisms With the 3-RS Structure
,”
Mech. Mach. Theory
,
124
, pp.
162
178
.
48.
Huang
,
X.
, and
Huang
,
X.
,
2017
, “
Direct Kinematics of a Spatial Parallel Mechanism Based on Conformal Geometric Algebra
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
43
(
12
), pp.
2377
2381
.
49.
Huang
,
X.
,
Ma
,
C.
, and
Su
,
H.
,
2019
, “
A Geometric Algebra Algorithm for the Closed-Form Forward Displacement Analysis of 3-PPS Parallel Mechanisms
,”
Mech. Mach. Theory
,
137
, pp.
280
296
.
50.
Liu
,
A.
, and
Yang
,
T.
,
1994
, “
Displacement Analysis of Spatial Parallel Mechanisms Using Continuation Method
,”
Mech. Sci. Technol.
,
3
(
51
), pp.
19
25
.
You do not currently have access to this content.