Abstract

In legged locomotion, the contact force between a robot and the ground plays a crucial role in balancing the robot. However, in quadrupedal robots, general whole-body controllers generate feed-forward force commands without considering the actual torque or force feedback. This paper presents a whole-body controller using the actual joint torque measured from a torque sensor, which enables the quadrupedal robot to demonstrate both dynamic locomotion and reaction to external disturbances. We compute external joint torque using the measured joint torque and the robot’s dynamics, and then we transform this to the moment of the center of mass (CoM). Using the computed CoM moment, the moment-based impedance controller distributes a feed-forward force corresponding to the desired moment of the CoM to stabilize the robot’s balance. Furthermore, to recover balance, the CoM motion is generated using capture point-based stepping control and zero moment point trajectory. The proposed whole-body controller was tested on a quadrupedal robot, named AiDIN-VI. Locomotive abilities on uneven terrains and slopes and in the presence of external disturbances are verified through experiments.

References

1.
Wensing
,
P. M.
,
Wang
,
A.
,
Seok
,
S.
,
Otten
,
D.
,
Lang
,
J.
, and
Kim
,
S.
,
2017
, “
Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots
,”
IEEE Trans. Rob.
,
33
(
3
), pp.
509
522
.
2.
Jin
,
B.
,
Sun
,
C.
,
Zhang
,
A.
,
Deng
,
G.
,
Zhu
,
Z.
, and
Sun
,
Z.
,
2019
, “
Joint Torque Estimation Toward Dynamic and Compliant Control for Gear-Driven Torque Sensorless Quadruped Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau
,
Nov. 4–8
, pp.
4630
4637
.
3.
Nagamatsu
,
Y.
,
Shirai
,
T.
,
Suzuki
,
H.
,
Kakiuchi
,
Y.
,
Okada
,
K.
, and
Inaba
,
M.
,
2017
, “
Distributed Torque Estimation Toward Low-Latency Variable Stiffness Control for Gear-Driven Torque Sensorless Humanoid
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
5239
5244
.
4.
Chuah
,
M. Y.
, and
Kim
,
S.
,
2014
, “
Enabling Force Sensing During Ground Locomotion: A Bio-Inspired, Multi-Axis, Composite Force Sensor Using Discrete Pressure Mapping
,”
IEEE Sens.
,
14
(
5
), pp.
1693
1703
.
5.
Valsecchi
,
G.
,
Grandia
,
R.
, and
Hutter
,
M.
,
2020
, “
Quadrupedal Locomotion on Uneven Terrain With Sensorized Feet
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1548
1555
.
6.
Mummolo
,
C.
,
Peng
,
W. Z.
,
Gonzalez
,
C.
, and
Kim
,
J. H.
,
2018
, “
Contact-Dependent Balance Stability of Biped Robots
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021009
.
7.
Focchi
,
M.
,
Featherstone
,
R.
,
Romeo
,
O.
,
Darwin
,
D. G.
, and
Semini
,
C.
,
2017
, “
Viscosity-Based Height Reflex for Workspace Augmentation for Quadrupedal Locomotion on Rough Terrain
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
5353
5360
.
8.
Fahmi
,
S.
,
Focchi
,
M.
,
Radulescu
,
A.
,
Fink
,
G.
,
Barasuol
,
V.
, and
Semini
,
C.
,
2020
, “
STANCE: Locomotion Adaptation Over Soft Terrain
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
443
457
.
9.
Focchi
,
M.
,
Prete
,
A. D.
,
Havoutis
,
I.
,
Featherstone
,
R.
,
Caldwell
,
D. G.
, and
Semini
,
C.
,
2017
, “
High-Slope Terrain Locomotion for Torque Controlled Quadruped Robots
,”
Auton. Rob.
,
41
(
1
), pp.
259
272
.
10.
Nguyen
,
Q.
,
Powell
,
M. J.
,
Katz
,
B.
,
Carlo
,
J. D.
, and
Kim
,
S.
,
2019
, “
Optimized Jumping on the MIT Cheetah 3 Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, QC
,
May 20–24
, pp.
7448
7454
.
11.
Mason
,
S.
,
Rotella
,
N.
,
Schaal
,
S.
, and
Righetti
,
L.
,
2018
, “
An MPC Walking Framework With External Contact Forces
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane
,
May 21–25
, pp.
1785
1790
.
12.
Winkler
,
A. W.
,
Farshidian
,
F.
,
Neunert
,
M.
,
Pardo
,
D.
, and
Buchli
,
J.
,
2017
, “
Online Walking Motion and Foothold Optimization for Quadruped Locomotion
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–Jun. 3
, pp.
5308
5313
.
13.
Bellicoso
,
C. D.
,
Jenelten
,
F.
,
Gehring
,
C.
, and
Hutter
,
M.
,
2020
, “
Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2261
2268
.
14.
Popovic
,
M. B.
,
Goswami
,
A.
, and
Herr
,
H.
,
2005
, “
Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications
,”
Int. J. Rob. Res.
,
24
(
12
), pp.
1013
1032
.
15.
Seyde
,
T.
,
Shrivastava
,
A.
,
Englsberger
,
J.
,
Bertrand
,
S.
,
Pratt
,
J.
, and
Griffin
,
R. J.
,
2018
, “
Inclusion of Angular Momentum During Planning for Capture Point Based Walking
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane
,
May 21–25
, pp.
1791
1798
.
16.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
6th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Genova
,
Dec. 4–6
, pp.
200
207
.
17.
Englsberger
,
J.
,
Ott
,
C.
,
Roa
,
M. A.
,
Albu-schäffer
,
A.
, and
Hirzinger
,
G.
,
2011
, “
Bipedal Walking Control Based on Capture Point Dynamics
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
4420
4427
.
18.
Englsberger
,
J.
,
Ott
,
C.
, and
Albu-schäffer
,
A.
,
2015
, “
Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
355
368
.
19.
Semini
,
C.
,
Barasuol
,
V.
,
Boaventura
,
T.
,
Frigerio
,
M.
,
Focchi
,
M.
,
Caldwell
,
D. G.
, and
Buchli
,
J.
,
2015
, “
Towards Versatile Legged Robots Through Active Impedance Control
,”
Int. J. Rob. Res.
,
34
(
7
), pp.
1003
1020
.
20.
Cong
,
Z.
,
Honglei
,
A.
,
Wu
,
C.
,
Lang
,
L.
,
Wei
,
Q.
, and
Hongxu
,
M.
,
2020
, “
Contact Force Estimation Method of Legged-Robot and Its Application in Impedance Control
,”
IEEE Access
,
8
, pp.
161175
161187
.
21.
Lee
,
Y. H.
,
Lee
,
Y. H.
,
Lee
,
H.
,
Kang
,
H.
,
Kim
,
Y. B.
,
Lee
,
J. H.
,
Phan
,
L. T.
,
Jin
,
S.
,
Moon
,
H.
,
Koo
,
J. C.
, and
Choi
,
H. R.
,
2019
, “
Whole-Body Motion and Landing Force Control for Quadrupedal Stair Climbing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau
,
Nov. 4–8
, pp.
4746
4751
.
22.
Lynch
,
D. J.
,
Lynch
,
K. M.
, and
Umbanhowar
,
P. B.
,
2020
, “
The Soft-Landing Problem: MiniMizing Energy Loss by a Legged Robot Impacting Yielding Terrain
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3658
3665
.
23.
Lee
,
Y. H.
,
Lee
,
Y. H.
,
Lee
,
H.
,
Kang
,
H.
,
Lee
,
J. H.
,
Phan
,
L. T.
,
Jin
,
S.
,
Kim
,
Y. B.
,
Seok
,
D.
,
Lee
,
S. Y.
,
Moon
,
H.
,
Koo
,
J. C.
, and
Choi
,
H. R.
,
2021
, “
Development of a Quadruped Robot System With Torque-Controllable Modular Actuator Unit
,”
IEEE Trans. Ind. Electron.
,
68
(
8
), pp.
7263
7273
.
24.
Kim
,
Y. B.
,
Kim
,
U.
,
Seok
,
D.
,
So
,
J.
,
Lee
,
Y. H.
, and
Choi
,
H. R.
,
2018
, “
Torque Sensor Embedded Actuator Module for Robotic Applications
,”
IEEE/ASME Trans. Mech.
,
23
(
4
), pp.
1662
1672
.
25.
Gehring
,
C.
,
Bellicoso
,
C. D.
,
Coros
,
S.
,
Bloesch
,
M.
,
Fankhauser
,
P.
,
Hutter
,
M.
, and
Siegwart
,
R.
,
2015
, “
Dynamic Trotting on Slopes for Quadrupedal Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg
,
Sept. 29–Oct. 2
, pp.
5129
5135
.
26.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei
,
Sept. 14–19
, pp.
1620
1626
.
27.
Shafiee-Ashtiani
,
M.
,
Yousefi-Koma
,
A.
, and
Shariat-Panahi
,
M.
,
2017
, “
Robust Bipedal Locomotion Control Based on Model Predictive Control and Divergent Component of Motion
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–Jun. 3
, pp.
3505
3510
.
28.
Griffin
,
R. J.
, and
Leonessa
,
A.
,
2016
, “
Model Predictive Control for Dynamic Footstep Adjustment Using the Divergent Component of Motion
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm
,
May 16–21
, pp.
1763
1768
.
29.
Lee
,
Y. H.
,
Lee
,
Y. H.
,
Lee
,
H.
,
Phan
,
L. T.
,
Kang
,
H.
,
Kim
,
U.
,
Jeon
,
J.
, and
Choi
,
H. R.
,
2017
, “
Trajectory Design and Control of Quadruped Robot for Trotting Over Obstacles
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC
,
Sept. 24–28
, pp.
4897
4902
.
30.
Ott
,
C.
,
Mukherjee
,
R.
, and
Nakamura
,
Y.
,
2015
, “
A Hybrid System Framework for Unified Impedance and Admittance Control
,”
J. Intell. Robot. Syst.
,
78
, pp.
359
375
.
You do not currently have access to this content.