Abstract

In this paper, possibilities for workspace enlargement and joint trajectory optimization of a (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robot are investigated. The inverse kinematic problem of the robot can be solved analytically, which is a desirable property of redundant robots, and is implemented in the investigations. A new method for detecting mechanical interferences between two links which are not directly connected is proposed for evaluating the workspace. Redundant degrees-of-freedom are optimized in order to further expand the workspace. An approach for determining the desired redundant joint coordinates is developed so that a performance index can be minimized approximately when the robot is following a prescribed Cartesian trajectory. The presented approaches are readily applicable to other kinematically redundant hybrid parallel robots proposed by the authors.

References

1.
Briot
,
S.
, and
Bonev
,
I. A.
,
2008
, “
Accuracy Analysis of 3-DOF Planar Parallel Robots
,”
Mech. Mach. Theory.
,
43
(
4
), pp.
445
458
.
2.
Duchaine
,
V.
, and
Gosselin
,
C. M.
,
2008
, “
Investigation of Human-robot Interaction Stability Using Lyapunov Theory
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp. 2189–2194.
3.
Duchaine
,
V.
,
St-Onge
,
B. M.
,
Gao
,
D.
, and
Gosselin
,
C.
,
2012
, “
Stable and Intuitive Control of An Intelligent Assist Device
,”
IEEE Trans. Haptics
,
5
(
2
), pp.
148
159
.
4.
Badeau
,
N.
,
Gosselin
,
C.
,
Foucault
,
S.
,
Laliberte
,
T.
, and
Abdallah
,
M. E.
,
2018
, “
Intuitive Physical Human-Robot Interaction: Using a Passive Parallel Mechanism
,”
IEEE Robot. Automat. Mag.
,
25
(
2
), pp.
28
38
.
5.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
, “
Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
791
798
.
6.
Gosselin
,
C.
,
Kong
,
X.
,
Foucault
,
S.
, and
Bonev
,
I.
,
2004
, “
A Fully Decoupled 3-dof Translational Parallel Mechanism
,”
Parallel Kinematic Machines in Research and Practice, 4th Chemnitz Parallel Kinematics Seminar
,
Chemnitz, Germany.
,
Apr. 20–21
, pp. 595–610.
7.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
8.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform-based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
157
182
.
9.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms
,”
Mech. Mach. Theory.
,
31
(
4
), pp.
365
379
.
10.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory.
,
35
(
1
), pp.
15
40
.
11.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, Vol.
128
,
Springer Science & Business Media
.
12.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE. Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
13.
Zlatanov
,
D.
,
Fenton
,
R. G.
, and
Benhabib
,
B.
,
1994
, “
Singularity Analysis of Mechanisms and Robots Via a Motion-Space Model of the Instantaneous Kinematics
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
,
San Diego, CA
,
May 8–13
, IEEE, pp. 980–985.
14.
Conconi
,
M.
, and
Carricato
,
M.
,
2009
, “
A New Assessment of Singularities of Parallel Kinematic Chains
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
757
770
.
15.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
, and
Li
,
T.
,
2009
, “
Dynamics and Control of a Planar 3-dof Parallel Manipulator With Actuation Redundancy
,”
Mech. Mach. Theory.
,
44
(
4
), pp.
835
849
.
16.
Wu
,
J.
,
Li
,
T.
,
Wang
,
J.
, and
Wang
,
L.
,
2013
, “
Performance Analysis and Comparison of Planar 3-dof Parallel Manipulators With One and Two Additional Branches
,”
J. Int. Robot. Syst.
,
72
(
1
), pp.
73
82
.
17.
Wu
,
J.
,
Chen
,
X.
,
Wang
,
L.
, and
Liu
,
X.
,
2014
, “
Dynamic Load-Carrying Capacity of a Novel Redundantly Actuated Parallel Conveyor
,”
Nonlinear Dyn.
,
78
(
1
), pp.
241
250
.
18.
Wu
,
J.
,
Zhang
,
B.
, and
Wang
,
L.
,
2016
, “
A Measure for Evaluation of Maximum Acceleration of Redundant and Nonredundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021001
.
19.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Dong
,
G.
,
2016
, “
Optimum Design of a Novel Redundantly Actuated Parallel Manipulator with Multiple Actuation Modes for High Kinematic and Dynamic Performance
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
631
658
.
20.
Sun
,
T.
,
Liang
,
D.
, and
Song
,
Y.
,
2017
, “
Singular-Perturbation-Based Nonlinear Hybrid Control of Redundant Parallel Robot
,”
IEEE. Trans. Ind. Electron.
,
65
(
4
), pp.
3326
3336
.
21.
Cha
,
S.-H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2007
, “
Singularity Avoidance for the 3-RRR Mechanism Using Kinematic Redundancy
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp. 1195–1200.
22.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2007
, “
3-PRRR Redundant Planar Parallel Manipulator: Inverse Displacement, Workspace and Singularity Analyses
,”
Mech. Mach. Theory.
,
42
(
8
), pp.
1007
1016
.
23.
Gosselin
,
C.
,
Laliberté
,
T.
, and
Veillette
,
A.
,
2015
, “
Singularity-Free Kinematically Redundant Planar Parallel Mechanisms with Unlimited Rotational Capability
,”
IEEE Trans. Robot.
,
31
(
2
), pp.
457
467
.
24.
Gosselin
,
C. M.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Robot.
,
32
(
2
), pp.
286
300
.
25.
Reveles
,
D.
, and
Wenger
,
P.
,
2016
, “
Trajectory Planning of Kinematically Redundant Parallel Manipulators by Using Multiple Working Modes
,”
Mech. Mach. Theory.
,
98
, pp.
216
230
.
26.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
27.
Wen
,
K.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2019
, “
Kinematically Redundant (6 + 3)-dof Hybrid Parallel Robot with Large Orientational Workspace and Remotely Operated Gripper
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, IEEE, pp. 1672–1678.
28.
Baron
,
N.
,
Philippides
,
A.
, and
Rojas
,
N.
,
2020
, “
A Robust Geometric Method of Singularity Avoidance for Kinematically Redundant Planar Parallel Robot Manipulators
,”
Mech. Mach. Theory.
,
151
, p.
103863
.
29.
Wen
,
K.
, and
Gosselin
,
C.
,
2019
, “
Kinematically Redundant Hybrid Robots with Simple Singularity Conditions and Analytical Inverse Kinematic Solutions
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3828
3835
.
30.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Int. Robot. Syst.
,
3
(
3
), pp.
201
212
.
31.
Wen
,
K.
,
Nguyen
,
T. S.
,
Harton
,
D.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2020
, “
A Backdrivable Kinematically Redundant (6 + 3)-Degree-of-Freedom Hybrid Parallel Robot for Intuitive Sensorless Physical Human–robot Interaction
,”
IEEE Trans. Robot.
, pp.
1
17
.
32.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2017
, “
Passively Driven Redundant Spherical Joint with Very Large Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031014
.
33.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2008
, “
Symmetrical Characteristics of the Workspace for Spatial Parallel Mechanisms With Symmetric Structure
,”
Mech. Mach. Theory.
,
43
(
4
), pp.
427
444
.
34.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2010
, “
Singularities Within the Workspace of Spatial Parallel Mechanisms With Symmetric Structures
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
224
(
2
), pp.
459
472
.
35.
Bonev
,
I. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2002
, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs
,”
Proceedings of the Parallel Kinematic Machines International Conference
,
Chemnitz, German
,
Apr. 23–25
, pp. 199–215.
36.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
,
1
(
1
), pp.
4
17
.
37.
Merlet
,
J.-P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
38.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
166
173
.
39.
Chang
,
P. H.
,
1987
, “
Analysis and Control of Robot Manipulators with Kinematic Redundancy
,”
Technical Report 1022 (MIT AI Lab., 1987)
.
You do not currently have access to this content.