Abstract

Mechanical components in a robotic system were used to provide body structure and mechanism to achieve physical motions following the commands from electronic controller. This kind of robotic system utilizes complex hardware and firmware for sensing and planning. To reduce computational cost and increase reliability for a robotic system, employing mechanical components to fully or partially take over control tasks is a promising way, which is also referred to as “mechanical intelligence” (MI). This paper proposes a shape memory alloy driven robot capable of using a reciprocating motion to crawl over a surface without any use of electronic controller. A mechanical logic switch is designed to determine the activation timing for a pair of antagonistic shape memory alloy (SMA) actuators. Meanwhile, a compliant pre-strain bistable mechanism is introduced to cooperate with the SMA actuators achieving reliable reciprocating motion between the two stable positions. The SMA actuator is modeled base on a static two-state theory while the bistable mechanism is described by combining a pseudo-rigid-body model (PRBM) with a Bi-beam constraint model (Bi-BCM). Following this, the design parameters of the bistable mechanism and SMA actuators are determined according to theoretical simulations. Finally, a robotic prototype is fabricated using anisotropic friction on its feet to convert the reciprocating motion of the actuator to uni-directional locomotion of the robot body over a surface. Experiments are carried out to validate the presented design concept and the modeling methods.

References

1.
Kang
,
R.
,
Yang
,
C.
,
Yang
,
M.
, and
Chen
,
Y.
,
2018
, “
Machines Which Can Think—Mechanical Intelligence (MI)
,”
Chin. J. Mech. Eng. (Engl. Ed.)
,
54
(
13
), p.
15
. 10.3901/JME.2018.13.015
2.
Kovac
,
M.
,
2016
, “
Learning From Nature How to Land Aerial Robots—Smaller Robots Can Use Mechanical Intelligence to Simplify the Task of Perching on a Target
,”
Science
,
352
(
6288
), pp.
895
896
. 10.1126/science.aaf6605
3.
Blickhan
,
R.
,
Seyfarth
,
A.
,
Geyer
,
H.
,
Grimmer
,
S.
,
Wagner
,
H.
, and
Günther
,
M.
,
2007
, “
Intelligence by Mechanics
,”
Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci.
,
365
(
1850
), pp.
199
220
. 10.1098/rsta.2006.1911
4.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
. 10.1177/027836499000900206
5.
Sreetharan
,
P. S.
, and
Wood
,
R. J.
,
2010
, “
Passive Aerodynamic Drag Balancing in a Flapping-Wing Robotic Insect
,”
ASME J. Mech. Des.
,
132
(
5
), p.
051006
. 10.1115/1.4001379
6.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication trategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), p.
451
455
. 10.1038/nature19100
7.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
22
), pp.
5698
5702
. 10.1073/pnas.1800386115
8.
Treml
,
B.
,
Gillman
,
A.
,
Buskohl
,
P.
, and
Vaia
,
R.
,
2018
, “
Origami Mechanologic
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
27
), pp.
6916
6921
. 10.1073/pnas.1805122115
9.
Preston
,
D. J.
,
Jiang
,
H. J.
,
Sanchez
,
V.
,
Rothemund
,
P.
,
Rawson
,
J.
,
Nemitz
,
M. P.
,
Lee
,
W. K.
,
Suo
,
Z.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2019
, “
A Soft Ring Oscillator
,”
Sci. Robot.
,
4
(
31
), p.
eaaw5496
. 10.1126/scirobotics.aaw5496
10.
Garrad
,
M.
,
Soter
,
G.
,
Conn
,
A. T.
,
Hauser
,
H.
, and
Rossiter
,
J.
,
2019
, “
A Soft Matter Computer for Soft Robots
,”
Sci. Robot.
,
4
(
33
), p.
eaaw6060
. 10.1126/scirobotics.aaw6060
11.
Bhovad
,
P.
,
Kaufmann
,
J.
, and
Li
,
S.
,
2019
, “
Peristaltic Locomotion Without Digital Controllers: Exploiting Multi-Stability in Origami to Coordinate Robotic Motion
,”
Extreme Mech. Lett.
,
32
, p.
100552
. 10.1016/j.eml.2019.100552
12.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
. 10.1016/j.matdes.2013.11.084
13.
Birman
,
V.
,
1997
, “
Review of Mechanics of Shape Memory Alloy Structures
,”
Am. Soc. Mech. Eng.
,
50
(
11
), p.
629
.
14.
Furuya
,
Y.
, and
Shimada
,
H.
,
1991
, “
Shape Memory Actuators for Robotic Applications
,”
Mater. Des.
,
12
(
1
), pp.
21
28
. 10.1016/0261-3069(91)90088-L
15.
Sreekumar
,
M.
,
Derby
,
S.
,
Nagarajan
,
T.
,
Singaperumal
,
M.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2007
, “
Critical Review of Current Trends in Shape Memory Alloy Actuators for Intelligent Robots
,”
Ind. Robot.
,
34
(
4
), pp.
285
294
. 10.1108/01439910710749609
16.
Kumar
,
P. K.
, and
Lagoudas
,
D. C.
,
2008
,
Introduction to Shape Memory Alloys
,
Springer
,
New York
.
17.
She
,
Y.
,
Li
,
C.
,
Cleary
,
J.
, and
Su
,
H. J.
,
2015
, “
Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors
,”
ASME J. Mech. Robot.
,
7
(
2
), p.
201007
.
18.
Lan
,
C. C.
, and
Yang
,
Y. N.
,
2009
, “
A Computational Design Method for a Shape Memory Alloy Wire Actuated Compliant Finger
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021009
. 10.1115/1.3042152
19.
Liu
,
C. Y.
, and
Liao
,
W. H.
,
2004
, “
A Snake Robot Using Shape Memory Alloys
,”
IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Shenyang, China
,
Aug. 22–26
, pp.
601
605
.
20.
Koh
,
J. S.
, and
Cho
,
K. J.
,
2013
, “
Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators
,”
IEEE-ASME Trans. Mechatron.
,
18
(
2
), pp.
419
429
. 10.1109/TMECH.2012.2211033
21.
Seok
,
S.
,
Onal
,
C. D.
,
Cho
,
K. J.
,
Wood
,
R. J.
,
Rus
,
D.
, and
Kim
,
S.
,
2013
, “
Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators
,”
IEEE-ASME Trans. Mechatron.
,
18
(
5
), pp.
1485
1497
. 10.1109/TMECH.2012.2204070
22.
Zhakypov
,
Z.
,
Mori
,
K.
,
Hosoda
,
K.
, and
Paik
,
J.
,
2019
, “
Designing Minimal and Scalable Insect-Inspired Multi-Locomotion Millirobots
,”
Nature
,
571
(
7765
), pp.
381
386
. 10.1038/s41586-019-1388-8
23.
Mohd Jani
,
J.
,
Leary
,
M.
, and
Subic
,
A.
,
2016
, “
Designing Shape Memory Alloy Linear Actuators: A Review
,”
J. Intell. Mater. Syst. Struct.
,
28
(
13
), pp.
1699
1718
. 10.1177/1045389X16679296
24.
Kuribayashi
,
K.
,
1991
, “
Improvement of the Response of an SMA Actuator Using a Temperature Sensor
,”
Int. J. Robot. Res.
,
10
(
1
), pp.
13
20
. 10.1177/027836499101000102
25.
Ma
,
N.
,
Song
,
G.
, and
Lee
,
H.
,
2004
, “
Position Control of Shape Memory Alloy Actuators With Internal Electrical Resistance Feedback Using Neural Networks
,”
Smart Mater. Struct.
,
13
(
4
), p.
777
783
. 10.1088/0964-1726/13/4/015
26.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
27.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joint
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
. 10.1115/1.1760776
28.
Ishii
,
H.
, and
Ting
,
K. L.
,
2004
, “
SMA Actuated Compliant Bistable Mechanisms
,”
Mechatronics
,
14
(
4
), pp.
421
437
. 10.1016/S0957-4158(03)00068-0
29.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2011
, “
Increasing Stroke and Output Force of Linear Shape Memory Actuators by Elastic Compensation
,”
Mechatronics
,
21
(
3
), pp.
570
580
. 10.1016/j.mechatronics.2011.02.005
30.
Chen
,
Q.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2011
, “
Microfabricated Bistable Module for Digital Microrobotics
,”
J. Micro-Nano Mech.
,
6
(
1–2
), pp.
1
12
. 10.1007/s12213-010-0025-2
31.
Kim
,
S. W.
,
Koh
,
J. S.
,
Lee
,
J. G.
,
Ryu
,
J.
,
Cho
,
M.
, and
Cho
,
K. J.
,
2014
, “
Flytrap-Inspired Robot Using Structurally Integrated Actuation Based on Bistability and a Developable Surface
,”
Bioinspir. Biomim.
,
9
(
3
), p.
036004
. 10.1088/1748-3182/9/3/036004
32.
Huang
,
H.
,
Chen
,
Y.
, and
Lv
,
Y.
,
2014
, “
A Novel Robot Leg Designed by Compliant Mechanism
,”
International Conference on Intelligent Robotics and Applications (ICIRA)
,
Switzerland
,
Dec. 17–20
, pp.
204
213
.
33.
Jung
,
S. P.
,
Jung
,
G. P.
,
Koh
,
J. S.
,
Lee
,
D. Y.
, and
Cho
,
K. J.
,
2015
, “
Fabrication of Composite and Sheet Metal Laminated Bistable Jumping Mechanism
,”
ASME J. Mech. Robot.
,
7
(
2
), p.
021010
. 10.1115/1.4029489
34.
Gorbet
,
R.
,
Morris
,
K.
, and
Chau
,
R.
,
2009
, “
Mechanism of Bandwidth Improvement in Passively Cooled SMA Position Actuators
,”
Smart Mater. Struct.
,
18
(
9
), p.
095013
. 10.1088/0964-1726/18/9/095013
35.
Brinson
,
L. C.
,
1993
, “
One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation With Non-Constant Material Functions and Redefined Martensite Internal Variable
,”
J. Intell. Mater. Syst. Struct.
,
4
(
2
), pp.
229
242
. 10.1177/1045389X9300400213
36.
Liang
,
C.
, and
Rogers
,
C. A.
,
1997
, “
One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials
,”
J. Intell. Mater. Syst. Struct.
,
8
(
4
), pp.
285
302
. 10.1177/1045389X9700800402
37.
Tanaka
,
K.
,
1986
, “
A Thermomechanical Sketch of Shape Memory Effect: One-Dimensional Tensile Behavior
,”
Res. Mechanica.
,
18
(
3
), pp.
251
263
.
38.
An
,
S. M.
,
Ryu
,
J.
,
Cho
,
M.
, and
Cho
,
K. J.
,
2012
, “
Engineering Design Framework for a Shape Memory Alloy Coil Spring Actuator Using a Static Two-State Model
,”
Smart Mater. Struct.
,
21
(
5
), pp.
1014
1022
.
39.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
2001
,
Mechanical Engineering Design
,
McGraw Hill. Inc.
,
New York
.
40.
Sun
,
L.
,
Huang
,
W. M.
,
Ding
,
Z.
,
Zhao
,
Y.
,
Wuang
,
C. C.
,
Purnawali
,
H.
, and
Tang
,
C.
,
2012
, “
Stimulus-Responsive Shape Memory Materials: A Review
,”
Mater. Des.
,
33
, pp.
577
640
. 10.1016/j.matdes.2011.04.065
41.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
. 10.1115/1.4000529
42.
Ma
,
F.
, and
Chen
,
G.
,
2017
, “
Bi-BCM: A Closed-Form Solution For Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
9
(
1
), p.
014501
. 10.1115/1.4035084
43.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Robot.
,
2
(
4
), p.
041006
. 10.1115/1.4002204
44.
Lewis
,
N.
,
York
,
A.
, and
Seelecke
,
S.
,
2013
, “
Experimental Characterization of Self-Sensing SMA Actuators Under Controlled Convective Cooling
,”
Smart Mater. Struct.
,
22
(
9
), p.
094012
. 10.1088/0964-1726/22/9/094012
45.
Webb
,
G. V.
,
Wilson
,
L.
,
Lagoudas
,
D. C.
, and
Rediniotis
,
O. K.
,
2000
, “
Adaptive Control of Shape Memory Alloy Actuators for Underwater Biomimetic Applications
,”
AIAA J.
,
38
(
2
), pp.
325
334
. 10.2514/2.960
You do not currently have access to this content.