Abstract
In this paper, we provide a general framework to determine inner and outer approximations to the singularity-free workspace of fully actuated robotic manipulators, subject to Type-I and Type-II singularities. This framework utilizes the sum-of-squares optimization technique, which is numerically implemented by semidefinite programming. In order to apply the sum-of-squares optimization technique, we convert the trigonometric functions in the kinematics of the manipulator to polynomial functions with an additional constraint. We define two quadratic forms, describing two ellipsoids, whose volumes are optimized to yield inner and outer approximations of the singularity-free workspace.
Issue Section:
Research Papers
References
1.
Gosselin
, C.
, and Angeles
, J.
, 1990
, “Singularity Analysis of Closed-Loop Kinematic Chains
,” IEEE Trans. Rob. Autom.
, 6
(3
), pp. 281
–290
. 10.1109/70.566602.
Merlet
, J.-P.
, 2006
, Parallel Robots
, Vol. 128
, Springer Science & Business Media
, Netherlands
.3.
Ryu
, S.-J.
, Kim
, J. W.
, Hwang
, J. C.
, Park
, C.
, Cho
, H. S.
, Lee
, K.
, Lee
, Y.
, Cornel
, U.
, Park
, F.
, and Kim
, J.
, 1999
, “Eclipse: An Overactuated Parallel Mechanism for Rapid Machining,” Parallel Kinematic Machines
, C. R.
Boler
, L.
Molinari-Tosatti
and K. S.
Smith
, eds., Springer
, London
, pp. 441
–455
.4.
Kim
, J.
, Hwang
, J. C.
, Kim
, J. S.
, Iurascu
, C. C.
, Park
, F. C.
, and Cho
, Y. M.
, 2002
, “Eclipse II: A New Parallel Mechanism Enabling Continuous 360-Degree Spinning Plus Three-Axis Translational Motions
,” IEEE Trans. Rob. Autom.
, 18
(3
), pp. 367
–373
. 10.1109/TRA.2002.10194725.
Kock
, S.
, and Schumacher
, W.
, 2000
, “A Mixed Elastic and Rigid-Body Dynamic Model of An Actuation Redundant Parallel Robot With High-Reduction Gears
,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings
, San Francisco, CA
, Apr. 24–28
, Vol. 2
, IEEE
, pp. 1918
–1923
.6.
Kock
, S.
, and Schumacher
, W.
, 1998
, “A Parallel Xy Manipulator with Actuation Redundancy for High-Speed and Active-Stiffness Applications
,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, Leuven, Belgium
, May
, Vol. 3
, IEEE
, pp. 2295
–2300
.7.
Ebrahimi
, I.
, Carretero
, J. A.
, and Boudreau
, R.
, 2008
, “A Family of Kinematically Redundant Planar Parallel Manipulators
,” ASME J. Mech. Des.
, 130
(6
), p. 062306
. 10.1115/1.29007238.
Dash
, A. K.
, Chen
, I. -M.
, Yeo
, S. H.
, and Yang
, G.
, 2003
, “Singularity-Free Path Planning of Parallel Manipulators Using Clustering Algorithm and Line Geometry
,” 2003 IEEE International Conference on Robotics and Automation
, Taipei, Taiwan
, Sept. 14–19
, Vol. 1
, IEEE
, pp. 761
–766
.9.
Sen
, S.
, Dasgupta
, B.
, and Mallik
, A. K.
, 2003
, “Variational Approach for Singularity-Free Path-Planning of Parallel Manipulators
,” Mech. Mach. Theory
, 38
(11
), pp. 1165
–1183
. 10.1016/S0094-114X(03)00065-X10.
Merlet
, J.-P.
, 1994
, “Trajectory Verification in the Workspace for Parallel Manipulators
,” Int. J. Rob. Res.
, 13
(4
), pp. 326
–333
. 10.1177/02783649940130040411.
Bhattacharya
, S.
, Hatwal
, H.
, and Ghosh
, A.
, 1998
, “Comparison of An Exact and An Approximate Method of Singularity Avoidance in Platform Type Parallel Manipulators
,” Mech. Mach. Theory
, 33
(7
), pp. 965
–974
. 10.1016/S0094-114X(97)00066-912.
Dasgupta
, B.
, and Mruthyunjaya
, T.
, 1998
, “Singularity-Free Path Planning for the Stewart Platform Manipulator
,” Mech. Mach. Theory
, 33
(6
), pp. 711
–725
. 10.1016/S0094-114X(97)00095-513.
Kaloorazi
, M.-H. F.
, Masouleh
, M. T.
, and Caro
, S.
, 2015
, “Determination of the Maximal Singularity-Free Workspace of 3-dof Parallel Mechanisms With a Constructive Geometric Approach
,” Mech. Mach. Theory
, 84
, pp. 25
–36
. 10.1016/j.mechmachtheory.2014.10.00314.
Kaloorazi
, M. H. F.
, Masouleh
, M. T.
, and Caro
, S.
, 2016
, “Determining the Maximal Singularity-Free Circle Or Sphere of Parallel Mechanisms Using Interval Analysis
,” Robotica
, 34
(1
), pp. 135
–149
. 10.1017/S026357471400127115.
Jiang
, Q.
, and Gosselin
, C. M.
, 2006
, “The Maximal Singularity-Free Workspace of Planar 3-RPR Parallel Mechanisms
,” 2006 International Conference on Mechatronics and Automation
, Luoyang, Henan, China
, June 25–28
, IEEE
, pp. 142
–146
.16.
Li
, H.
, Gosselin
, C. M.
, and Richard
, M. J.
, 2006
, “Determination of Maximal Singularity-Free Zones in the Workspace of Planar Three-Degree-of-Freedom Parallel Mechanisms
,” Mech. Mach. Theory
, 41
(10
), pp. 1157
–1167
. 10.1016/j.mechmachtheory.2005.12.00317.
Li
, H.
, Gosselin
, C. M.
, and Richard
, M. J.
, 2007
, “Determination of the Maximal Singularity-Free Zones in the Six-Dimensional Workspace of the General Gough–Stewart Platform
,” Mech. Mach. Theory
, 42
(4
), pp. 497
–511
. 10.1016/j.mechmachtheory.2006.04.00618.
Abbasnejad
, G.
, Daniali
, H. M.
, and Kazemi
, S.
, 2012
, “A New Approach to Determine the Maximal Singularity-Free Zone of 3-RPR Planar Parallel Manipulator
,” Robotica
, 30
(6
), pp. 1005
–1012
. 10.1017/S026357471100123819.
Saadatzi
, M.
, Masouleh
, M. T.
, Taghirad
, H.
, Gosselin
, C.
, and Teshnehlab
, M.
, 2011
, “Multi-Objective Scale Independent Optimization of 3-RPR Parallel Mechanisms
,” Proc. IFToMM
, Guanajuato, Mexico
. 2019/07/201120.
Saadatzi
, M. H.
, Masouleh
, M. T.
, Taghirad
, H. D.
, Gosselin
, C.
, and Cardou
, P.
, 2011
, “On the Optimum Design of 3-RPR Parallel Mechanisms
,” 2011 19th Iranian Conference on Electrical Engineering (ICEE)
, Tehran, Iran
, May 17–19
, IEEE
, pp. 1
–6
.21.
Arsenault
, M.
, and Boudreau
, R.
, 2004
, “The Synthesis of Three-Degree-of-Freedom Planar Parallel Mechanisms with Revolute Joints (3-r Rr) for An Optimal Singularity-Free Workspace
,” J. Rob. Syst.
, 21
(5
), pp. 259
–274
. 10.1002/rob.2001322.
Gallant
, M.
, and Boudreau
, R.
, 2002
, “The Synthesis of Planar Parallel Manipulators with Prismatic Joints for An Optimal, Singularity-Free Workspace
,” J. Rob. Syst.
, 19
(1
), pp. 13
–24
. 10.1002/rob.811823.
Caro
, S.
, Chablat
, D.
, Goldsztejn
, A.
, Ishii
, D.
, and Jermann
, C.
, 2014
, “A Branch and Prune Algorithm for the Computation of Generalized Aspects of Parallel Robots
,” Artif. Intell.
, 211
, pp. 34
–50
. 10.1016/j.artint.2014.02.00124.
Stamper
, R. E.
, Tsai
, L. -W.
, and Walsh
, G. C.
, 1997
, “Optimization of a Three Dof Translational Platform for Well-Conditioned Workspace
,” Proceedings of International Conference on Robotics and Automation
, Albuquerque, NM
, Apr. 25–27
, Vol. 4
, IEEE
, pp. 3250
–3255
.25.
Mousavi
, M. A.
, Masouleh
, M. T.
, and Karimi
, A.
, 2014
, “On the Maximal Singularity-Free Ellipse of Planar 3-RPR Parallel Mechanisms Via Convex Optimization
,” Rob. Comput.-Integrated Manuf.
, 30
(2
), pp. 218
–227
. 10.1016/j.rcim.2013.09.01226.
Karimi
, A.
, Masouleh
, M. T.
, and Cardou
, P.
, 2014
, “Singularity-Free Workspace Analysis of General 6-ups Parallel Mechanisms Via Convex Optimization
,” Mech. Mach. Theory
, 80
, pp. 17
–34
. 10.1016/j.mechmachtheory.2014.04.00527.
Blekherman
, G.
, Parrilo
, P.
, and Thomas
, R.
, 2013
, Semidefinite Optimization and Convex Algebraic Geometry
(MOS-SIAM Series on Optimization
), Society for Industrial and Applied Mathematics
.28.
Boyd
, S.
, El Ghaoui
, L.
, Feron
, E.
, and Balakrishnan
, V.
, 1994
, Linear Matrix Inequalities in System and Control Theory
, Vol. 15
, SIAM
, Philadelphia, PA
.29.
Zlatanov
, D.
, Bonev
, I. A.
, and Gosselin
, C. M.
, 2002
, “Constraint Singularities of Parallel Mechanisms
,” Proceedings 2002 IEEE International Conference on Robotics and Automation
, Washington, DC
, May 11–15
, Vol. 1
, IEEE
, pp. 496
–502
.30.
Murray
, R.
, 2017
, A Mathematical Introduction to Robotic Manipulation
, CRC Press
, Boca Raton, FL
.31.
Apostol
, T.
, 1974
, Mathematical Analysis
(Addison-Wesley Series in Mathematics
), Addison-Wesley
.32.
Folland
, G.
, 2013
, Real Analysis: Modern Techniques and Their Applications
(Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts
), Wiley
.33.
Boyd
, S.
, and Vandenberghe
, L.
, 2004
, Convex Optimization
, Cambridge University Press
, Cambridge, UK
.34.
Weisstein
, E. W.
Ellipse
. From MathWorld—A Wolfram Web Resource
.35.
Parrilo
, P. A.
, 2000
, “Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization
,” Ph.D. thesis
, California Institute of Technology
, Pasadena, CA
.36.
Bohigas
, O.
, Manubens
, M.
, and Ros
, L.
, 2016
, Singularities of Robot Mechanisms: Numerical Computation and Avoidance Path Planning
, Vol. 41
, Springer
, Switzerland
.37.
Bezanson
, J.
, Edelman
, A.
, Karpinski
, S.
, and Shah
, V. B.
, 2017
, “Julia: A Fresh Approach to Numerical Computing
,” SIAM Rev.
, 59
(1
), pp. 65
–98
. 10.1137/14100067138.
MOSEK
, A.
, 2019
, MOSEK Optimizer API for Julia 9.0.88
.39.
Dunning
, I.
, Huchette
, J.
, and Lubin
, M.
, 2017
, “Jump: A Modeling Language for Mathematical Optimization
,” SIAM Rev.
, 59
(2
), pp. 295
–320
. 10.1137/15M102057540.
Porta
, J. M.
, Ros
, L.
, Bohigas
, O.
, Manubens
, M.
, Rosales
, C.
, and Jaillet
, L.
, 2014
, “The Cuik Suite: Analyzing the Motion Closed-Chain Multibody Systems
,” IEEE Rob. Autom. Mag.
, 21
(3
), pp. 105
–114
. 10.1109/MRA.2013.228746241.
W. R.
Mathematica
, Version 12.0. Champaign, IL, 2019
.Copyright © 2020 by ASME
You do not currently have access to this content.