Abstract

Flexible robots have been widely studied for application to minimally invasive surgery because of their dexterity and miniaturization ability. Conventional master devices developed to manipulate rigid link-type robots are difficult to apply to flexible robots due to structural difference. In addition, the different kinematic structures of the master device and flexible slave robot cause complex mapping issues. Furthermore, most high-redundancy flexible robots inserted through an over-tube have limited bending angles depending on the insertion depth. Conventional master devices were not designed to comply with this limitation of flexible robots. We developed an isosceles master device that provides intuitive and simple mapping factors for controlling and maintaining the wire tension of a flexible robot in a safe range. We applied a variable isosceles triangle mechanism that structurally limits the bending angle according to the insertion depth. Experimental results showed that our master device can control a flexible slave robot with an error of less than 1.5 mm. Because of the limited bending angle, excessive tension and the resulting damage to the wire were prevented. The isosceles master device can also hold its position and orientation with a passive holding mechanism.

References

1.
Bailly
,
Y.
,
Amirat
,
Y.
, and
Fried
,
G.
,
2011
, “
Modeling and Control of a Continuum Style Microrobot for Endovascular Surgery
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
1024
1030
. 10.1109/TRO.2011.2151350
2.
Simaan
,
N.
,
2005
, “
Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
IEEE
,
Piscataway, NJ
,
April
, pp.
3012
3017
.
3.
Chen
,
G.
,
Fu
,
L.
,
Pham
,
M. T.
, and
Redarce
,
T.
,
2013
, “
Characterization and Modeling of a Pneumatic Actuator for a Soft Continuum Robot
,”
Proceedings of the IEEE International Conference on Mechatronics and Automation
,
IEEE
,
Piscataway, NJ
,
Aug. 4–7
, pp.
243
248
.
4.
Yoshimitsu
,
K.
,
Kato
,
T.
,
Song
,
S.-E.
, and
Hata
,
N.
,
2014
, “
A Novel Four-Wire-Driven Robotic Catheter for Radio-Frequency Ablation Treatment
,”
Int. J. Comput. Assist. Radiol. Surg.
,
9
(
5
), pp.
867
874
. 10.1007/s11548-014-0982-3
5.
Amanov
,
A.
,
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2015
, “Additive Manufacturing of Patient-Specific Tubular Continuum Manipulators,”
Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
,
Z. R.
Yaniv
and
R. J.
Webster III
, eds.,
SPIE
,
Bellingham, WA
,
94151P
.
6.
Anderson
,
V. C.
, and
Horn
,
R. C.
,
1967
, “
Tensor Arm Manipulator Design
,”
Trans. ASME
,
67-DE 57
, pp.
1
12
.
7.
Wright
,
C.
,
Johnson
,
A.
,
Peck
,
A.
,
McCord
,
Z.
,
Naaktgeboren
,
A.
,
Gianfortoni
,
P.
,
Rivero
,
M. G.
,
Hatton
,
R.
, and
Choset
,
H.
,
2007
, “
Design of a Modular Snake Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
Piscataway, NJ
,
Oct. 29–Nov. 2
, pp.
2609
2614
.
8.
Li
,
Z.
, and
Du
,
R.
,
2013
, “
Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
1
11
.
9.
Gravagne
,
I. A.
,
Rahn
,
C. D.
, and
Walker
,
I. D.
,
2003
, “
Large Deflection Dynamics, and Control for Planar Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
299
307
. 10.1109/TMECH.2003.812829
10.
Patel
,
N.
,
Seneci
,
C. A.
,
Shang
,
J.
,
Leibrandt
,
K.
,
Yang
,
G.-Z.
,
Darzi
,
A.
, and
Teare
,
J.
,
2015
, “
Evaluation of a Novel Flexible Snake Robot for Endoluminal Surgery
,”
Surg. Endosc.
,
29
(
11
), pp.
3349
3355
. 10.1007/s00464-015-4088-y
11.
Ji
,
D.
,
Kang
,
T. H.
,
Shim
,
S.
,
Lee
,
S.
, and
Hong
,
J.
,
2019
, “
Wire-Driven Flexible Manipulator With Constrained Spherical Joints for Minimally Invasive Surgery
,”
Int. J. Comput. Assist. Radiol. Surg.
,
14
(
8
), pp.
1365
1377
. 10.1007/s11548-019-01976-4
12.
Sarli
,
N.
, and
Simaan
,
N.
,
2017
, “
Minimal Visual Occlusion Redundancy Resolution of Continuum Robots in Confined Spaces
,”
IEEE International Conference on Intelligent Robots and Systems Robotics
,
Sept. 24–28
,
IEEE
,
Piscataway, NJ
, pp.
24
28
.
13.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2010
, “
Design and Control of Concentric-Tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
. 10.1109/TRO.2009.2035740
14.
Bajo
,
A.
,
Goldman
,
R. E.
,
Wang
,
L.
,
Fowler
,
D.
, and
Simaan
,
N.
,
2012
, “
Integration and Preliminary Evaluation of an Insertable Robotic Effectors Platform for Single Port Access Surgery
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
Piscataway, NJ
,
May 14–18
, pp.
3381
3387
.
15.
Yoon
,
H.-S.
,
Jeong
,
J. H.
, and
Yi
,
B.-J.
,
2018
, “
Image-Guided Dual Master–Slave Robotic System for Maxillary Sinus Surgery
,”
IEEE Trans. Rob.
,
34
(
4
), pp.
1098
1111
. 10.1109/TRO.2018.2830334
16.
Lau
,
K. C.
,
Leung
,
E. Y. Y.
,
Chiu
,
P. W. Y.
,
Yam
,
Y.
,
Lau
,
J. Y. W.
, and
Poon
,
C. C. Y.
,
2016
, “
A Flexible Surgical Robotic System for Removal of Early-Stage Gastrointestinal Cancers by Endoscopic Submucosal Dissection
,”
IEEE Trans. Ind. Inform.
,
12
(
6
), pp.
2365
2374
. 10.1109/TII.2016.2576960
17.
Frazelle
,
C. G.
,
Kapadia
,
A.
, and
Walker
,
I.
,
2018
, “
Developing a Kinematically Similar Master Device for Extensible Continuum Robot Manipulators
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025005
. 10.1115/1.4039075
18.
El-Hussieny
,
H.
,
Mehmood
,
U.
,
Mehdi
,
Z.
,
Jeong
,
S. G.
,
Usman
,
M.
,
Hawkes
,
E. W.
,
Okarnura
,
A. M.
, and
Ryu
,
J. H.
,
2018
, “
Development and Evaluation of an Intuitive Flexible Interface for Teleoperating Soft Growing Robots
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
Madrid, Spain
,
Oct. 1–5
, pp.
4995
5002
.
19.
Simaan
,
N.
,
Yasin
,
R. M.
, and
Wang
,
L.
,
2018
, “
Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics
,”
Annu. Rev. Control Rob. Auton. Syst.
,
1
(
1
), pp.
465
490
. 10.1146/annurev-control-060117-104956
20.
Wang
,
X.
,
1999
, “
A Behavior-Based Inverse Kinematics Algorithm to Predict Arm Prehension Postures for Computer-Aided Ergonomic Evaluation
,”
J. Biomech.
,
32
(
5
), pp.
453
460
. 10.1016/S0021-9290(99)00023-8
21.
Mavrikios
,
D.
,
Karabatsou
,
V.
,
Alexopoulos
,
K.
,
Pappas
,
M.
,
Gogos
,
P.
, and
Chryssolouris
,
G.
,
2006
, “
An Approach to Human Motion Analysis and Modelling
,”
Int. J. Ind. Ergon.
,
36
(
11
), pp.
979
989
. 10.1016/j.ergon.2006.08.001
22.
Wauben
,
L. S. G. L.
,
Van Veelen
,
M. A.
,
Gossot
,
D.
, and
Goossens
,
R. H. M.
,
2006
, “
Application of Ergonomic Guidelines During Minimally Invasive Surgery: A Questionnaire Survey of 284 Surgeons
,”
Surg. Endosc. Other Interv. Tech.
,
20
(
8
), pp.
1268
1274
. 10.1007/s00464-005-0647-y
23.
Hayward
,
V.
,
Gregorio
,
P.
,
Astley
,
O.
,
Greenish
,
S.
,
Doyon
,
M.
,
Lessard
,
L.
,
McDougall
,
J.
,
Sinclair
,
I.
,
Boelen
,
S.
,
Chen
,
X.
,
Demers
,
J.G.
,
Poulin
,
J.
,
Benguigui
,
I.
,
Almey
,
N.
,
Makuc
,
B.
, and
Zhang
,
X.
,
1998
, “Freedom-7: A High Fidelity Seven Axis Haptic Device With Application to Surgical Training,”
Experimental Robotics V
,
Springer
,
Berlin, Heidelberg
, pp.
443
456
.
24.
Li
,
Z.
,
Ren
,
H.
,
Chiu
,
P. W. Y.
,
Du
,
R.
, and
Yu
,
H.
,
2016
, “
A Novel Constrained Wire-Driven Flexible Mechanism and Its Kinematic Analysis
,”
Mech. Mach. Theory
,
95
, pp.
59
75
. 10.1016/j.mechmachtheory.2015.08.019
25.
Kim
,
S.
,
Shim
,
S.
,
Ji
,
D.
, and
Hong
,
J.
,
2019
, “
Wave-Shape Notched Compliant Joint With High Rigidity
,”
The Hamlyn Symposium on Medical Robotics
,
June 23–26
,
EPSRC
,
Swindon
, pp.
41
42
.
26.
Webster
,
R. J.
, III
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
27.
Ji
,
D.
,
Kang
,
T. H.
,
Shim
,
S.
, and
Hong
,
J.
,
2019
, “
Analysis of Twist Deformation in Wire-Driven Continuum Surgical Robot
,”
Int. J. Control Autom. Syst.
,
18
(
1
), pp.
1
11
. 10.1007/s12555-018-0400-7
28.
Wang
,
J.
,
Wang
,
S.
,
Li
,
J.
,
Ren
,
X.
, and
Briggs
,
R. M.
,
2018
, “
Development of a Novel Robotic Platform With Controllable Stiffness Manipulation Arms for Laparoscopic Single-Site Surgery (LESS)
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
14
(
1
), p.
e1838
. 10.1002/rcs.1838
You do not currently have access to this content.