Abstract

Compliant mechanisms have been studied extensively as an alternative to traditional rigid body design with advantages like part number reduction, compliance, and multistable configurations. Most of the past research on compliant mechanisms has been restricted to the case where they are subject to holonomic constraints. In this paper, we develop a model of a planar compliant mechanism with nonholonomic constraints as a mobile robot that can move on the ground. The only actuation that is assumed is a torque on the system. It is shown that the dynamics of this system is similar to that of a well-known nonholonomic system, called the Chaplygin sleigh, but with an added degree-of-freedom and an additional quartic potential. The interaction of compliance and the nonholonomic constraint lead to multiple stable limit cycle oscillations in a reduced velocity space that correspond to oscillations about different stable physical configurations. These limit cycle oscillations produce motion of the compliant mechanism in the plane with differing characteristics. The modeling framework in this paper can form the basis for the design of underacted mobile compliant nonholonomic robots or mobile robots that incorporate compliant mechanisms as mechanical switches.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Belzile
,
L.
, and
Birglen
,
B.
,
2014
, “
A Compliant Self-Adaptive Gripper With Proprioceptive Haptic Feedback
,”
Auton. Robots
,
36
(
1–2
), pp.
76
91
. 10.1007/s10514-013-9360-1
3.
Deimel
,
R.
, and
Brock
,
O.
,
2016
, “
A Novel Type of Compliant and Underactuated Robotic Hand for Dexterous Grasping
,”
Int. J. Rob. Res.
,
14
(
1–3
), pp.
161
185
. 10.1177/0278364915592961
4.
Crooks
,
W.
,
Rozen-Levy
,
S.
,
Trimmer
,
B.
,
Rogers
,
C.
, and
Messner
,
W.
,
2017
, “
Passive Gripper Inspired by Manduca Sexta and the Fin Ray® Effect
,”
Int. J. Rob. Res.
,
35
(
1–3
), pp.
161
185
. 10.1177/1729881417721155
5.
Rutishauser
,
S.
,
Sprowitz
,
A.
,
Righetti
,
L.
, and
Ijspeert
,
A. J.
,
2008
, “
Passive Compliant Quadruped Robot Using Central Pattern Generators for Locomotion Control
,”
2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
710
715
.
6.
Haldane
,
D. W.
,
Casarez
,
C. S.
,
Karras
,
J. T.
,
Lee
,
J.
,
Ota
,
H.
,
Javey
,
A.
, and
Fearing
,
R. S.
,
2015
, “
Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021011
. 10.1115/1.4029495
7.
Jayaram
,
K.
, and
Full
,
R. J.
,
2016
, “
Cockroaches Traverse Crevices, Crawl Rapidly in Confined Spaces, and Inspire a Soft, Legged Robot
,”
Proc. Natl. Acad. Sci. USA
,
113
(
8
), pp.
950
957
. 10.1073/pnas.1514591113
8.
Megaro
,
V.
,
Zehnder
,
J.
,
Bacher
,
M.
,
Coros
,
S.
,
Gross
,
M.
, and
Thomaszewski
,
B.
,
2019
, “
A Computational Design Tool for Compliant Mechanisms
,”
ACM Trans. Graph.
,
36
(
4
), pp.
82
94
. 10.1145/3072959.3073636
9.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
657
666
. 10.1115/1.1760776
10.
Opdahl
,
P. G.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
1998
, “
An Investigation Into Compliant Bistable Mechanisms
,”
Proceeding of the 1998 ASME Design Engineering Technical Conferences
,
Atlanta, GA
,
Sept. 13–16
.
11.
Dickinson
,
M. H.
,
Lehmann
,
F. -O.
, and
Sane
,
S. P.
,
1999
, “
Wing Rotation and the Aerodynamic Basis of Insect Flight
,”
Science
,
284
(
5422
), pp.
1954
1960
. 10.1126/science.284.5422.1954
12.
Whitney
,
J.
, and
Wood
,
R.
,
2010
, “
Aeromechanics of Passive Rotation in Flapping Flight
,”
J. Fluid Mech.
,
660
, pp.
197
220
. 10.1017/S002211201000265X
13.
Beal
,
D. N.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2006
, “
Passive Propulsion in Vortex Wakes
,”
J. Fluid Mech.
,
549
(
1
), pp.
385
402
. 10.1017/S0022112005007925
14.
Fish
,
F. E.
, and
Lauder
,
G. V.
,
2006
, “
Passive and Active Flow Control by Swimming Fishes and Mammals
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
193
224
. 10.1146/annurev.fluid.38.050304.092201
15.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T.
,
1996
, “
Integrated Manufacture of Exoskeletons and Sensing Structures for Folded Millirobots
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
. 10.1115/1.2826843
16.
Yu
,
Y.-Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M.-G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
. 10.1115/1.1900750
17.
Jensen
,
B. D.
,
Howell
,
L. L.
, and
Salmon
,
L. G.
,
1998
, “
Introduction of Two-Link In-Plane, Bistable Compliant Mems
,”
Proceeding of the 1998 ASME Design Engineering Technical Conferences, DETC98/MECH-5837
,
Atlanta, GA
,
Sept. 13–16
, pp.
1
6
.
18.
Bloch
,
A. M.
,
2003
,
Nonholonomic Mechanics and Control
,
Springer-Verlag
,
Heidelberg, Germany
.
19.
Borisov
,
A. V.
, and
Mamaev
,
I. S.
,
2002
, “
On the History of the Development of the Nonholonomic Dynamics
,”
Reg. Chaotic Dyn.
,
7
(
1
), pp.
43
47
. 10.1070/RD2002v007n01ABEH000194
20.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1991
, “
Steering Nonholonomic Systems in Chained Form
,”
Proceedings of the 30th IEEE Conference on Decision and Control
,
Honolulu, HI
,
Dec. 5–7
, pp.
1121
1126
.
21.
Kolmanovsky
,
I.
, and
McClamroch
,
N. H.
,
1996
, “
Hybrid Feedback Laws for a Class of Cascade Nonlinear Control Systems
,”
IEEE Trans. Automat. Contr.
,
41
(
9
), pp.
1271
1282
. 10.1109/9.536497
22.
Bullo
,
F.
, and
Lewis
,
A. D.
,
2003
, “
Kinematic Controllability and Motion Planning for the Snakeboard
,”
IEEE Trans. Automat. Contr.
,
19
(
3
), pp.
494
498
. 10.1109/TRA.2003.810236
23.
Whittaker
,
E. T.
,
1904
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
Cambridge University Press
,
Cambridge, UK
.
24.
Chaplygin
,
S.
,
1911
, “
On the Theory of the Motion of Nonholonomic Systems. Theorem on the Reducing Multiplier
,”
Mat. Sbornik
,
28
(
2
), pp.
303
314
.
25.
Caratheodory
,
C.
,
1933
, “
Der Schlitten
,”
J. Appl. Math. Mech.
,
13
(
2
), pp.
71
76
.
26.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
,
AMS
,
Providence, RI
.
27.
Bloch
,
A. M.
,
Krishnaprasad
,
P. S.
,
Marsden
,
J. E.
, and
Murray
,
R. M.
,
1996
, “
Nonholonomic Mechanical Systems With Symmetry
,”
Arch. Ration. Mech. Anal.
,
136
(
1
), pp.
21
99
. 10.1007/BF02199365
28.
Borisov
,
A. V.
, and
Mamaev
,
I. S.
,
2003
, “
On the History of the Development of the Nonholonomic Mechanics
,”
Reg. Chaotic Dyn.
,
7
(
1
), pp.
43
47
. 10.1070/RD2002v007n01ABEH000194
29.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2018
, “
Sinusoidal Control and Limit Cycle Analysis of the Dissipative Chaplygin Sleigh
,”
Nonlinear Dyn.
,
93
(
2
), pp.
835
846
. 10.1007/s11071-018-4230-1
30.
Bizyaev
,
I.
,
Borisov
,
A. V.
,
Kozlov
,
V. V.
, and
Mamaev
,
I. S.
,
2019
, “
Fermi-Like Acceleration and Power-Law Energy Growth in Nonholonomic Systems
,”
Nonlinearity
,
32
(
9
), pp.
3209
3233
. 10.1088/1361-6544/ab1f2d
31.
Pollard
,
B.
,
Fedonyuk
,
V.
, and
Tallapragada
,
P.
, “
Limit Cycle Behavior and Model Reduction of an Oscillating Fish-Like Robot
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, p.
V001T04A006
.
32.
Pollard
,
B.
,
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2019
, “
Swimming on Limit Cycles With Nonholonomic Constraints
,”
Nonlinear Dyn.
,
97
(
4
), pp.
2453
2468
. 10.1007/s11071-019-05141-z
33.
Dear
,
T.
,
Kelly
,
S. D.
,
Travers
,
M.
, and
Choset
,
H.
,
2013
, “
Mechanics and Control of a Terrestrial Vehicle Exploiting a Nonholonomic Constraint for Fishlike Locomotion
,”
Proceedings of the ASME 2013 Dynamic Systems and Control Conference
,
Palo Alto, CA
,
Oct. 21–23
, p.
V002T33A004
.
34.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2017
, “
The Dynamics of a Two Link Chaplygin Sleigh Driven by an Internal Momentum Wheel
,”
Proceedings of the 2017 American Control Conference
,
Seattle, WA
,
May 24–26
, pp.
2171
2175
.
35.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2019
, “
Chaotic Dynamics of the Chaplygin Sleigh With a Passive Internal Rotor
,”
Nonlinear Dyn.
,
95
(
1
), pp.
309
320
. 10.1007/s11071-018-4565-7
36.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2019
, “
The Dynamics of a Chaplygin Sleigh With an Elastic Internal Rotor
,”
Reg. Chaotic Dyn.
,
24
(
1
), pp.
114
126
. 10.1134/S1560354719010076
37.
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2017
, “
The Stick-Slip Motion of a Chaplygin Sleigh With a Piecewise Smooth Nonholonomic Constraint
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031021
. 10.1115/1.4035407
You do not currently have access to this content.