Abstract

We present a new design method that is tailored for designing a physical interactive robotic arm for overground physical interaction. Designing such robotic arms present various unique requirements that differ from existing robotic arms, which are used for general manipulation, such as being able to generate required forces at every point inside the workspace and/or having low intrinsic mechanical impedance. Our design method identifies these requirements and categorizes them into kinematic and dynamic characteristics of the robot and then ensures that these unique considerations are satisfied in the early design phase. The robot’s capability for use in such tasks is analyzed using mathematical simulations of the designed robot, and discussion of its dynamic characteristics is presented. With our proposed method, the robot arm is ensured to perform various overground interactive tasks with a human.

References

1.
Preising
,
B.
,
Hsia
,
T. C.
, and
Mittelstadt
,
B.
,
1991
, “
A Literature Review: Robots in Medicine
,”
IEEE Eng. Med. Biol. Mag.
,
10
(
2
), pp.
13
22
. 10.1109/51.82001
2.
Broadbent
,
E.
,
Stafford
,
R.
, and
Macdonald
,
B.
,
2009
, “
Acceptance of Healthcare Robots for the Older Population: Review and Future Directions
,”
Int. J. Soc. Rob.
,
1
(
4
), pp.
319
330
. 10.1007/s12369-009-0030-6
3.
Kim
,
J.
,
Gu
,
G. M.
, and
Heo
,
P.
,
2016
,
Biomedical Engineering: Frontier Research and Converging Technologies
,
H.
Jo
, H. Jun,
J.
Shin
, and
S.
Lee
, eds., Vol. 9,
Springer
,
Cham
, pp.
489
501
.
4.
Chang
,
W. H.
, and
Kim
,
Y.-H.
,
2013
, “
Robot-Assisted Therapy in Stroke Rehabilitation
,”
J. Stroke
,
15
(
3
), pp.
174
181
. 10.5853/jos.2013.15.3.174
5.
Dukelow
,
S. P.
,
Herter
,
T. M.
,
Moore
,
K. D.
,
Demers
,
J.
,
Glasgow
,
J. I.
,
Bagg
,
S. D.
,
Norman
,
K. E.
, and
Scott
,
S. H.
,
2010
, “
Quantitative Assessment of Limb Position Sense Following Stroke
,”
Neurorehabil. Neural Repair
,
24
(
2
), pp.
178
187
. 10.1177/1545968309345267
6.
Krebs
,
H. I.
,
Palazzolo
,
J. J.
,
Dipietro
,
L.
,
Ferraro
,
M.
,
Krol
,
J.
,
Rannekleiv
,
K.
,
Volpe
,
B. T.
, and
Hogan
,
N.
,
2003
, “
Rehabilitation Robotics: Performance- Based Progressive Robot-Assisted Therapy
,”
Auton. Robots
,
15
(
1
), pp.
7
20
. 10.1023/A:1024494031121
7.
Nishihara
,
S.
,
Sugano
,
N.
,
Nishii
,
T.
,
Tanaka
,
H.
,
Nakamura
,
N.
,
Yoshikawa
,
H.
, and
Ochi
,
T.
,
2004
, “
Clinical Accuracy Evaluation of Femoral Canal Preparation Using the Robodoc System
,”
J. Orthop. Sci.
,
9
(
5
), pp.
452
461
. 10.1007/s00776-004-0804-5
8.
Honl
,
M.
,
Dierk
,
O.
,
Gauck
,
C.
,
Carrero
,
V.
,
Lampe
,
F.
,
Dries
,
S.
,
Quante
,
M.
,
Schwieger
,
K.
,
Hille
,
E.
, and
Morlock
,
M. M.
,
2003
, “
Comparison of Robotic-Assisted and Manual Implantation of a Primary Total Hip Replacement: A Prospective Study
,”
J. Bone Joint Surg.
,
85
(
8
), pp.
1470
1478
. 10.2106/00004623-200308000-00007
9.
Hackney
,
M. E.
, and
Earhart
,
G. M.
,
2009
, “
Effects of Dance on Movement Control in Parkinson’s Disease: A Comparison of Argentine Tango and American Ball-Room
,”
J. Rehabil. Med.
,
41
(
6
), pp.
475
481
. 10.2340/16501977-0362
10.
Knapp
,
M. L.
,
Hall
,
J. A.
, and
Horgan
,
T. G.
,
2013
,
Nonverbal Communication in Human Interaction
,
Cengage Learning
,
Wadsworth, Boston, MA
.
11.
Feth
,
D.
,
Groten
,
R.
,
Peer
,
A.
,
Hirche
,
S.
, and
Buss
,
M.
,
2009
, “
Performance Related Energy Exchange in Haptic Human-Human Interaction in a Shared Virtual Object Manipulation Task
,”
World Haptics 2009-Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
,
IEEE
,
New York
, pp.
338
343
.
12.
Stefanov
,
N.
,
Peer
,
A.
, and
Buss
,
M.
,
2009
, “
Role Determination in Human-Human Interaction
,”
World Haptics 2009-Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
,
IEEE
,
New York
, pp.
51
56
.
13.
Reed
,
K. B.
, and
Peshkin
,
M. A.
,
2008
, “
Physical Collaboration of Human-Human and Human-Robot Teams
,”
IEEE Trans. Haptic
,
1
(
2
), pp.
108
120
. 10.1109/TOH.2008.13
14.
Sylos-Labini
,
F.
,
d’Avella
,
A.
,
Lacquaniti
,
F.
, and
Ivanenko
,
Y.
,
2018
, “
Human-Human Interaction Forces and Inter-Limb Coordination During Side-by-Side Walking With Hand Contact
,”
Front. Physiol.
,
9
, p.
179
. 10.3389/fphys.2018.00179
15.
Hogan
,
N.
,
1987
, “
Stable Execution of Contact Tasks Using Impedance Control
,”
Proceedings of the 1987 IEEE International Conference on Robotics and Automation
,
Raleigh, NC
,
Mar. 31–Apr. 3
, Vol.
4
,
IEEE
,
New York
, pp.
1047
1054
.
16.
Sawers
,
A.
,
Bhattacharjee
,
T.
,
McKay
,
J. L.
,
Hackney
,
M. E.
,
Kemp
,
C. C.
, and
Ting
,
L. H.
,
2017
, “
Small Forces That Differ with Prior Motor Experience can Communicate Movement Goals During Human-Human Physical Interaction
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
8
. 10.1186/s12984-017-0217-2
17.
van der Linde
,
R. Q.
, and
Lammertse
,
P.
,
2003
, “
Hapticmaster–A Generic Force Controlled Robot for Human Interaction
,”
Ind. Rob.
,
30
(
6
), pp.
515
524
. 10.1108/01439910310506783
18.
Massie
,
T. H.
, and
Salisbury
,
J. K.
,
1994
, “
The Phantom Haptic Interface: A Device for Probing Virtual Objects
,”
Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Chicago, IL
,
Nov. 6–11
, Vol.
55
,
Citeseer
, pp.
295
300
.
19.
Salisbury
,
J. K.
, and
Srinivasan
,
M. A.
,
1997
, “
Phantom-Based Haptic Interaction with Virtual Objects
,”
IEEE Comput. Graphics Appl.
,
17
(
5
), pp.
6
10
. 10.1109/MCG.1997.1626171
20.
Scott
,
S. H.
,
1999
, “
Apparatus for Measuring and Perturbing Shoulder and Elbow Joint Positions and Torques During Reaching
,”
J. Neurosci. Methods
,
89
(
2
), pp.
119
127
. 10.1016/S0165-0270(99)00053-9
21.
Hogan
,
N.
,
Krebs
,
H. I.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
,
1993
, “
Mit-Manus: A Workstation for Manual Therapy and Training
,”
SPIE Application in Optical Science and Engineering
,
Boston, MA
,
Mar. 26
, Vol.
1833
,
Telemanipulator Technology
, pp.
28
34
.
22.
Chen
,
T. L.
,
Bhattacharjee
,
T.
,
McKay
,
J. L.
,
Borinski
,
J. E.
,
Hackney
,
M. E.
,
Ting
,
L. H.
, and
Kemp
,
C. C.
,
2015
, “
Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction
,”
PLoS One
,
10
(
5
), p.
e0125179
. 10.1371/journal.pone.0125179
23.
Wang
,
Z.
,
Yuan
,
J.
, and
Buss
,
M.
,
2008
, “
Modelling of Human Haptic Skill: A Framework and Preliminary Results
,”
Proceedings of the 17th IFAC World Congress
,
Seoul, South Korea
,
July 6–11
, pp.
14761
14766
.
24.
Schaal
,
S.
,
Sternad
,
D.
,
Osu
,
R.
, and
Kawato
,
M.
,
2004
, “
Rhythmic Arm Movement Is Not Discrete
,”
Nat. Neurosci.
,
7
(
10
), pp.
1136
1143
. 10.1038/nn1322
25.
Pandilov
,
Z.
, and
Dukovski
,
V.
,
2014
, “
Comparison of the Characteristics Between Serial and Parallel Robots
,”
Acta Tech. Corvininesis-Bull. Eng.
,
7
(
1
), pp.
143
160
.
26.
Patel
,
Y. D.
, and
George
,
P. M.
,
2012
, “
Parallel Manipulators Applications—A Survey
,”
Mod. Mech. Eng.
,
2
(
3
), pp.
57
64
. 10.4236/mme.2012.23008
27.
Campos
,
L.
,
Bourbonnais
,
F.
,
Bonev
,
I. A.
, and
Bigras
,
P.
,
2010
, “
Development of a Five-Bar Parallel Robot With Large Workspace
,”
Proceeding of the ASME 2010 IDETC/CIE
,
Montreal, QC, Canada
,
Aug. 15–18
,
Citeseer
, pp.
917
922
.
28.
Alıcı
,
G.
,
2000
, “
Determination of Singularity Contours for Five-Bar Planar Parallel Manipulators
,”
Robotica
,
18
(
5
), pp.
569
575
. 10.1017/S0263574700002733
29.
Asada
,
H.
, and
Youcef-Toumi
,
K.
,
1984
, “
Analysis and Design of a Direct-Drive Arm with a Five-Bar-Link Parallel Drive Mechanism
,”
ASME J. Dyn. Syst. Meas. Contr.
,
106
(
3
), pp.
225
230
. 10.1115/1.3149676
30.
Chablat
,
D.
, and
Wenger
,
P.
,
1999
, “
Regions of Feasible Point-to-Point Trajectories in the Cartesian Workspace of Fully-Parallel Manipulators
,”
hal-00145125
, pp.
1
6
.
31.
Bonev
,
I.
, and
Gosselin
,
C. M.
,
2001
, “
Singularity Loci of Planar Parallel Manipulators with Revolute Joints
,”
Proceedings of the 2nd Workshop on Computational Kinematics
,
Seoul, Korea
,
May 20–22
, Vol.
41
, pp.
219
299
.
32.
Basu
,
P. S.
, and
Farhang
,
K.
,
1994
, “
Kinematic Analysis and Design of Two-Input, Five-Bar Mechanisms Driven by Relatively Small Cranks
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1108
1114
. 10.1115/1.2919494
33.
Midha
,
A.
,
Cipra
,
R.
, and
Farhang
,
K.
,
1985
, “
Analysis and Design of Basic Linkages for Harmonic Motion Generation
,”
ASME J. Mech., Trans., Automation
,
107
(
4
), pp.
499
506
. 10.1115/1.3260752
34.
Song
,
Y. S.
, and
Hogan
,
N.
,
2015
, “
A Novel Interactive Exoskeletal Robot for Overground Locomotion Studies in Rats
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
4
), pp.
591
599
. 10.1109/TNSRE.2015.2396852
35.
Midha
,
A.
, and
Zhao
,
Z.-L.
,
1985
, “
Synthesis of Planar Linkage via Loop Closure and Nonlinear Equations Solution
,”
Mech. Mach. Theory
,
20
(
6
), pp.
491
502
. 10.1016/0094-114X(85)90068-0
36.
yu Chao
,
W.
,
yuan Xin
,
H.
,
Wei
,
W.
, and
jia Rong
,
L.
,
2017
, “
Frictional Analysis of Deep-Groove Ball Bearings with Varying Circumference Radial Preloads
,”
Adv. Mech. Eng.
,
9
(
5
), p.
1687814017703895
.
37.
Armstrong
,
B.
,
1988
, “
Friction: Experimental Determination, Modeling and Compensation
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, Vol.
3
,
IEEE
,
New York
, pp.
1422
1427
.
38.
Quach
,
N.
, and
Liu
,
M.
,
2000
, “
Friction Torque Estimation and Compensation for Robot Arms
,”
Proceedings of the Australia, Conference on Robotics and Automation
,
Melbourne, Australia
,
Aug. 30–Sept. 1
,
Citeseer
, pp.
211
216
.
39.
Flash
,
T.
, and
Mussa-Ivaldi
,
F.
,
1990
, “
Human Arm Stiffness Characteristics During the Maintenance of Posture
,”
Exp. Brain Res.
,
82
(
2
), pp.
315
326
. 10.1007/BF00231251
You do not currently have access to this content.