Abstract

This paper deals with the design, development, modeling, and experimental validation of a prototype endoscopic attachment that can be actuated independently by soft actuators to position an endoscopic catheter tip to a desired location. The soft actuators are miniaturized pneumatic artificial muscles (MPAMs), and by applying 137–827 kPa pressure to one or more MPAMs, the tip of the endoscopic catheter can be positioned in an approximately hemispherical region of 45 mm radius. An optimization-based forward kinematic model to predict the profile of the actuated end-effector is developed. Experiments conducted on the prototype show that the kinematics model can predict the deformation profile of the end-effector with a maximum error of 2 mm. An inverse-kinematics model to estimate the pressure required in the MPAMs to position the tip of the catheter at a specified point is also developed. The pressures in the MPAMs are controlled using an ATmel ATMega 2560 micro-controller with the inputs generated with a thumb-stick to show that real-time actuation is possible. Finally, ex-vivo experiments were conducted to show that the developed prototype end-effector can be successfully used to independently actuate endoscopic catheters.

References

1.
Yeung
,
B. P. M.
, and
Gourlay
,
T.
,
2012
, “
A Technical Review of Flexible Endoscopic Multitasking Platforms
,”
Int. J. Surg.
,
10
(
7
), pp.
345
354
. 10.1016/j.ijsu.2012.05.009
2.
Zorn
,
L.
,
Nageotte
,
F.
,
Zanne
,
P.
,
Legner
,
A.
,
Dallemagne
,
B.
,
Marescaux
,
J.
, and
de Mathelin
,
M.
,
2018
, “
A Novel Telemanipulated Robotic Assistant for Surgical Endoscopy: Pre-Clinical Application to ESD
,”
IEEE Trans. Biomed. Eng.
,
65
(
4
), pp.
797
808
. 10.1109/TBME.2017.2720739
3.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2000
, “
On the Kinematics of Remotely-Actuated Continuum Robots
,”
IEEE Conference on Robotics and Automation
,
San Francisco
,
Apr. 24–28
, Vol.
3
, pp.
2544
2550
.
4.
Xu
,
K.
,
Goldman
,
R. E.
,
Ding
,
J.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2009
, “
System Design of an Insertable Robotic Effector Platform for Single Port Access (SPA) Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis
,
Oct. 11–15
, pp.
5546
5552
.
5.
Szewczyk
,
J.
,
De Sars
,
V.
,
Bidaud
,
P.
, and
Dumont
,
G.
,
2001
, “An Active Tubular Polyarticulated Micro-System for Flexible Endoscope,”
Experimental Robotics VII
,
D.
Rus
and
S.
Singh
,
Springer
,
Berlin, Heidelberg
, pp.
179
188
.
6.
Kumbhari
,
V.
, and
Khashab
,
M. A.
,
2014
, “
Perforation Due to ERCP
,”
Tech. Gastro. Endoscopy
,
16
(
4
), pp.
187
194
. 10.1016/j.tgie.2014.08.003
7.
De Greef
,
A.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2009
, “
Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators
,”
Precision Eng.
,
33
(
4
), pp.
311
321
. 10.1016/j.precisioneng.2008.10.004
8.
Marchese
,
A. D.
,
Komorowski
,
K.
,
Onal
,
C. D.
, and
Rus
,
D.
,
2014
, “
Design and Control of a Soft and Continuously Deformable 2D Robotic Manipulation System
,”
IEEE International Conference on Robotics and Automation
,
Hongkong, China
,
May 31–June 5
, pp.
2189
2196
.
9.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
. 10.1038/nature14543
10.
Stapfer
,
M.
,
Selby
,
R. R.
,
Stain
,
S. C.
,
Katkhouda
,
N.
,
Parekh
,
D.
,
Jabbour
,
N.
, and
Garry
,
D.
,
2000
, “
Management of Duodenal Perforation After Endoscopic Retrograde Cholangiopancreatography and Sphincterotomy
,”
Ann. Surg.
,
232
(
2
), pp.
191
. 10.1097/00000658-200008000-00007
11.
Gaylord
,
R. H.
,
1958
, “
Fluid Actuated Motor System and Stroking Device
,” 22 U.S. Patent No. 2,844,126.
12.
Schulte
,
H.
,
1961
,
The Application of External Power in Prosthetics and Orthotics, The Characteristics of McKibben Artificial Muscle
,
National Research Council
,
Ottawa, ON, Canada
,
874
.
13.
Volder
,
De
,
Moers
,
M.
,
Reynaerts
,
A.
, D.
,
2011
, “
Fabrication and Control of Miniature Mckibben Actuators
,”
Sens. Actuators, A.
,
166
(
1
), pp.
111
116
. 10.1016/j.sna.2011.01.002
14.
Chakravarthy
,
S.
,
Aditya
,
K.
, and
Ghosal
,
A.
,
2014
, “
Experimental Characterization and Control of Miniaturized Pneumatic Artificial Muscle
,”
ASME Trans. J. Med. Devices
,
8
(
4
), pp.
041011
. 10.1115/1.4028420
15.
Kurumaya
,
S.
,
Nabae
,
H.
,
Endo
,
G.
, and
Suzumori
,
K.
,
2017
, “
Design of Thin Mckibben Muscle and Multifilament Structure
,”
Sens. Actuators A.
,
261
, pp.
66
74
. 10.1016/j.sna.2017.04.047
16.
Trivedi
,
D.
,
Rahn
,
C. D.
,
Kier
,
W. M.
, and
Walker
,
I. D.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
. 10.1155/2008/520417
17.
Vocke
,
R. D. III
,
Kothera
,
C. S.
,
Chaudhuri
,
A.
,
Woods
,
B. K.
, and
Wereley
,
N. M.
,
2012
, “
Design and Testing of a High-Specific Work Actuator Using Miniature Pneumatic Artificial Muscles
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
365
378
. 10.1177/1045389X11431743
18.
Sardellitti
,
I.
,
Park
,
J.
,
Shin
,
D.
, and
Khatib
,
O.
,
2007
, “
Air Muscle Controller Design in the Distributed Macro-Mini (DM 2) Actuation Approach
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego
,
Oct. 29–Nov. 2
, pp.
1822
1827
.
19.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
19th Mediterranean Conference on Control & Automation
,
Corfu, Greece
,
June 20–23
,
2011
, pp.
1439
1446
.
20.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2018
, “
A Survey on Static Modeling of Miniaturized Pneumatic Artificial Muscles With New Model and Experimental Results
,”
ASME Trans., Appl. Mech. Rev.
,
70
(
4
), p.
040802
. 10.1115/1.4041660
21.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME Trans., J. Mech. Robotics
,
10
(
6
), p.
064501
. 10.1115/1.4041200
22.
Büchler
,
D.
,
Ott
,
H.
, and
Peters
,
J.
,
2016
, “
A Lightweight Robotic Arm With Pneumatic Muscles for Robot Learning
,”
IEEE International Conference on Robotics and Automation
,
Stockholm, Sweden
,
May 16–21
, pp.
4086
4092
.
23.
Li
,
H.
,
Kawashima
,
K.
,
Tadano
,
K.
,
Ganguly
,
S.
, and
Nakano
,
S.
,
2013
, “
Achieving Haptic Perception in Forceps’ Manipulator Using Pneumatic Artificial Muscle
,”
IEEE/ASME Trans. Mech.
,
18
(
1
), pp.
74
85
. 10.1109/TMECH.2011.2163415
24.
Kang
,
R.
,
Branson
,
D. T.
,
Zheng
,
T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2013
, “
Design, Modeling and Control of a Pneumatically Actuated Manipulator Inspired by Biological Continuum Structures
,”
Bioinspiration Biomimetics
,
8
(
3
), p.
036008
. 10.1088/1748-3182/8/3/036008
25.
Jamwal
,
P. K.
,
Xie
,
S. Q.
,
Hussain
,
S.
, and
Parsons
,
J. G.
,
2014
, “
An Adaptive Wearable Parallel Robot for the Treatment of Ankle Injuries
,”
IEEE/ASME Trans. Mechatronics
,
19
(
1
), pp.
64
75
. 10.1109/TMECH.2012.2219065
26.
Kang
,
R.
,
Guo
,
Y.
,
Chen
,
L.
,
Branson
,
D. T. III
, and
Dai
,
J. S.
,
2017
, “
Design of a Pneumatic Muscle Based Continuum Robot with Embedded Tendons
,”
IEEE/ASME Trans. Mechatronics
,
22
(
2
), pp.
751
761
. 10.1109/TMECH.2016.2636199
27.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. USA
,
114
(
1
), pp.
51
56
. 10.1073/pnas.1615140114
28.
Liu
,
Y.
,
Zang
,
X.
,
Liu
,
X.
, and
Wang
,
L.
,
2015
, “
Design of a Biped Robot Actuated by Pneumatic Artificial Muscles
,”
Bio.-Med. Mater. Eng.
,
26
(
s1
), pp.
S757
S766
. 10.3233/BME-151367
29.
Ashwin
,
K.
,
Jose
,
D. P.
, and
Ghosal
,
A.
,
2015
, “
Modeling and Analysis of a Flexible End-Effector for Actuating Endoscopic Catheters
,”
Proceedings of the 14th IFToMM World Congress
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
113
120
.
30.
MATLAB
,
2011
. 7.12. 0.635 (r2011a),
The MathWorks Inc.
Natick, MA
.
31.
Tondu
,
B.
,
2012
, “
Modelling of the Mckibben Artificial Muscle: A Review
,”
J. Intell. Mater. Syst. Struct.
,
23
(
3
), pp.
225
253
. 10.1177/1045389X11435435
32.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of Mckibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst.
,
20
(
2
), pp.
15
38
. 10.1109/37.833638
33.
Chen
,
D.
, and
Ushijima
,
K.
,
2014
, “
Prediction of the Mechanical Performance of Mckibben Artificial Muscle Actuator
,”
Int. J. Mech. Sci.
,
78
, pp.
183
192
. 10.1016/j.ijmecsci.2013.11.010
34.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2016
, “
Novel Considerations on Static Force Modeling of Pneumatic Muscle Actuators
,”
IEEE/ASME Trans. Mechatronics
,
21
(
6
), pp.
2647
2659
. 10.1109/TMECH.2016.2585503
35.
Jog
,
C. S.
,
2015
,
Continuum Mechanics
, Vol.
1
,
Cambridge University Press
,
Delhi, India
.
36.
Davis
,
S.
, and
Caldwell
,
D. G.
,
2006
, “
Braid Effects on Contractile Range and Friction Modeling in Pneumatic Muscle Actuators
,”
Int. J. Robotics Res.
,
25
(
4
), pp.
359
369
. 10.1177/0278364906063227
37.
Hocking
,
E. G.
, and
Wereley
,
N. M.
,
2012
, “
Analysis of Nonlinear Elastic Behavior in Miniature Pneumatic Artificial Muscles
,”
Smart Mater. Struct.
,
22
(
1
), p.
014016
. 10.1088/0964-1726/22/1/014016
38.
Simaan
,
N.
,
Taylor
,
R.
, and
Flint
,
P.
,
2004
, “
A Dexterous System for Laryngeal Surgery
,”
IEEE Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
1
, pp.
351
357
.
39.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Robotics
,
24
(
6
), pp.
1262
1273
. 10.1109/TRO.8860
40.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S.-E.
,
Golby
,
A. J.
, and
Hata
,
N.
,
2015
, “
Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model
,”
IEEE/ASME Trans. Mechatronics
,
20
(
5
), pp.
2252
2263
. 10.1109/TMECH.2014.2372635
41.
Kuo
,
C.-H.
,
Chen
,
Y.-C.
, and
Pan
,
T.-Y.
,
2017
, “
Continuum Kinematics of a Planar Dual-Backbone Robot based on Pseudo-Rigid-Body Model: Formulation, Accuracy, and Efficiency
,”
ASME 2017 International Design Engineering Technical Conferences & Computers & Information in Engineering Conference
,
Cleveland
,
Aug. 6–9
, p.
V05AT08A015
.10.1115/detc2017-67853
42.
Shahabi
,
E.
, and
Kuo
,
C. H.
,
2018
, “
Solving Inverse Kinematics of a Planar Dual-Backbone Continuum Robot using Neural Network
,”
European Conference on Mechanism Science
,
Aachen, Germany
,
Sept. 4–6
, pp.
355
361
.
43.
Menon
,
M. S.
,
Ananthasuresh
,
G.
, and
Ghosal
,
A.
,
2013
, “
Natural Motion of One-Dimensional Flexible Objects Using Minimization Approaches
,”
Mech. Mach. Theory
,
67
, pp.
64
76
. 10.1016/j.mechmachtheory.2013.04.003
44.
Ghosal
,
A.
,
2006
,
Robotics: Fundamental Concepts and Analysis
,
Oxford University Press
,
Delhi, India
.
45.
Hartley
,
R.
, and
Zisserman
,
A.
,
2003
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
New York
.
46.
Carter
,
F.
,
Frank
,
T.
,
Davies
,
P.
, and
Cuschieri
,
A.
,
2000
, “
Puncture Forces of Solid Organ Surfaces
,”
Surgical Endoscopy
,
14
(
9
), pp.
783
786
. 10.1007/s004640000165
47.
Artifon
,
E. L.
,
Cheng
,
S.
,
Nakadomari
,
T. T.
,
Kashiwagi
,
L.
,
Ardengh
,
J. C.
,
Belmonte
,
E.
, and
Otoch
,
J. P.
,
2018
, “
Ex Vivos Models to Teaching Therapeutic Endoscopic Ultrasound (t-eus)
,”
Revista de Gastroenterología del Perú
,
38
(
1
), pp.
103
110
.
You do not currently have access to this content.