The popularization of fused deposition modeling (FDM) technology and open-source microcontrollers has permitted the explosion of electric hand prostheses that can be designed, shared, built, and operated at a low cost, under the Do It Yourself premise. Patients with limb reductions at the transcarpal or transradial level are best candidates to benefit from them. They manage the gross location with the remaining limb, while the built-in motors offer the possibility of controlling each finger independently. The number of mobile joints along the finger and the type of transmission can determine the quality of the grasp. Moreover, there is a need of objective procedures to assess the functionality of complete prototypes at reasonable effort. This work makes a critical review of the different transmission systems that can be found in most low-cost finger designs: linkage and tendon mechanisms. Mechanical performance has been analyzed using a standardized model of the index finger. Furthermore, robotic grasp quality metrics (GQM) have been used to evaluate by simulation the functionality of complete devices. Neither finger transmission design appeared clearly advantageous in the range of flexion studied. The evaluation of the complete devices gave slightly better quality grades for the linkage-driven model. Instead, tendon-driven model achieved a greater quantity of successful grasps. In the current state of art, some other aspects may have led to a dominant situation of the tendon-driven hands: fewer number of parts to be printed, easier assembly for a nonexpert user, advantageous in pursuit of lightweight devices.

References

1.
Ten Kate
,
J.
,
Smit
,
G.
, and
Breedveld
,
P.
,
2017
, “
3D-Printed Upper Limb Prostheses: A Review
,”
Disability Rehabil. Assist. Technol.
,
12
(
3
), pp.
300
314
.
2.
Vujaklija
,
I.
,
Farina
,
D.
, and
Aszmann
,
O. C.
,
2016
, “
New Developments in Prosthetic Arm Systems
,”
Orthop. Res. Rev.
,
8
, pp.
31
39
.
3.
Saikia
,
A.
,
Mazumdar
,
S.
,
Sahai
,
N.
,
Paul
,
S.
,
Bhatia
,
D.
,
Verma
,
S.
, and
Rohilla
,
P. K.
,
2016
, “
Recent Advancements in Prosthetic Hand Technology
,”
J. Med. Eng. Technol.
,
40
(5), pp.
1
10
.
4.
Phillips
,
B.
,
Zingalis
,
G.
,
Ritter
,
S.
, and
Mehta
,
K.
,
2015
, “
A Review of Current Upper-Limb Prostheses for Resource Constrained Settings
,”
Fifth IEEE Global Humanitarian Technology Conference
(
GHTC
), Seattle, WA, Oct. 8–11, pp.
52
58
.
5.
Patrick
,
S.
, 2015, “
DIY Prosthetic Hand & Forearm
,” Autodesk Inc., San Rafael, CA, accessed Sept. 1, 2017, http://www.instructables.com/id/Voice-Controlled-Prosthetic-Hand-Forearm/
6.
Pakanati
,
L.
, 2014, “
Mind Controlled Robotic Arm
,” Autodesk Inc., San Rafael, CA, accessed Sept. 1, 2017, http://www.instructables.com/id/Mind-Controlled-Robotic-Arm/
7.
Langevin
,
G.
, 2013, “
Inmoov Hand and Forearm
,” Paris, France, accessed Sept. 1, 2017, http://inmoov.fr/hand-and-forarm/
8.
Controzzi
,
M.
,
Cipriani
,
C.
, and
Carrozza
,
M.
,
2014
, “
Design of Artificial Hands: A Review
,”
The Human Hand as an Inspiration for Robot Hand Development
,
R.
Balasubramanian
and
V.
Santos
, eds.,
Springer
,
Cham, Switzerland
, pp.
219
246
.
9.
Baker
,
C.
,
Brent
,
D.
,
Wilson
,
C.
,
Xu
,
J.
, and
Thompson
,
L. A.
,
2017
, “
Additive Manufacturing for Economical, User-Accessible Upper-Limb Prosthetics
,”
Prosthetics Orthotics Open J.
,
1
(
1:8
), pp.
1
5
.http://www.imedpub.com/articles/additive-manufacturing-for-economical-useraccessible-upperlimb-prosthetics.pdf
10.
Burn
,
M. B.
,
Ta
,
A.
, and
Gogola
,
G. R.
,
2016
, “
Three-Dimensional Printing of Prosthetic Hands for Children
,”
J. Hand Surg.
,
41
(
5
), pp.
103
109
.
11.
Zuniga
,
J. M.
,
Peck
,
J.
,
Srivastava
,
R.
,
Katsavelis
,
D.
, and
Carson
,
A.
,
2016
, “
An Open Source 3D-Printed Transitional Hand Prosthesis for Children
,”
J. Prosthetics Orthotics
,
28
(
3
), pp.
103
108
.
12.
Farina
,
D.
, and
Amsüss
,
S.
,
2016
, “
Reflections on the Present and Future of Upper Limb Prostheses
,”
Expert Rev. Med. Dev.
,
13
(
4
), pp.
321
324
.
13.
Catalano
,
M. G.
,
Grioli
,
G.
,
Farnioli
,
E.
,
Serio
,
A.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2014
, “
Adaptive Synergies for the Design and Control of the Pisa/IIT SoftHand
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
768
782
.
14.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
15.
Centro di ricerca “
E. Piaggio
,” Fondazione Istituto Italiano di Tecnologia (IIT), 2015, “
Natural Machine Motion Initiative (NMMI)
,” Fondazione Istituto Italiano di Tecnologia (IIT), Geneva, Italy, accessed Apr. 30, 2018, https://www.naturalmachinemotioninitiative.com/
16.
Dally
,
C.
,
Johnson
,
D.
,
Canon
,
M.
,
Ritter
,
S.
, and
Mehta
,
K.
,
2015
, “
Characteristics of a 3D-Printed Prosthetic Hand for Use in Developing Countries
,”
Fifth IEEE Global Humanitarian Technology Conference (GHTC)
, Seattle, WA, Oct. 8–11, pp.
66
70
.
17.
Bowyer
,
A.
,
2010
, “
RepRap
,” Bath, UK, accessed Apr. 30, 2018, http://reprap.org/
18.
Tanaka
,
K. S.
, and
Lightdale-Miric
,
N.
,
2016
, “
Advances in 3D-Printed Pediatric Prostheses for Upper Extremity Differences
,”
J. Bone Jt. Surg.
,
98
(
15
), pp.
1320
1326
.
19.
U.S. Department of Health & Human Services, National Institutes of Health, 2014, “
NIH 3D Print Exchange
,” National Institutes of Health, Bethesda, MD, accessed Oct. 30, 2017, https://3dprint.nih.gov
20.
Owen
,
J.
,
2014
, “
E-NABLE
,” Seattle, WA, accessed Aug. 1, 2017, http://enablingthefuture.org/which-design/
21.
Gibbard
,
J.
,
2013
, “
Open Hand Project
,” Bristol, UK, accessed July 20, 2017, www.openhandproject.org
22.
Gibbard
,
J.
,
2014
, “
Openbionics
,” Bristol, UK, accessed July 1, 2017, https://www.openbionics.com
23.
Gretsch
,
K. F.
,
Lather
,
H. D.
,
Peddada
,
K. V.
,
Deeken
,
C. R.
,
Wall
,
L. B.
, and
Goldfarb
,
C. A.
,
2015
, “
Development of Novel 3D-Printed Robotic Prosthetic for Transradial Amputees
,”
Prosthetics Orthotics Int.
,
1
(
4
), pp.
3
6
.
24.
Elmansy
,
R.
,
2015
, “
Designing the 3D-Printed Prosthetic Hand
,”
Des. Manage. Rev.
,
26
(
1
), pp.
24
31
.https://onlinelibrary.wiley.com/doi/epdf/10.1111/drev.10311
25.
Rubert
,
C.
, and
Morales
,
A.
,
2016
, “
Comparison Between Grasp Quality Metrics and the Anthropomorphism Index for the Evaluation of Artificial Hands
,”
Sixth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
(
BioRob16
), Singapore, June 26–29, pp.
1352
1357
.
26.
Rubert
,
C.
,
Leon
,
B.
,
Sancho-bru
,
J.
, and
Morales
,
A.
,
2018
, “
Characterization of Grasp Quality Metrics
,”
J. Intell. Rob. Syst.
,
89
(2–3), pp. 319–342.
27.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2008
,
Underactuated Robotic Hands
(Springer Tracts in Advanced Robotics, Vol.
40
),
B.
Siciliano
,
O.
Khatib
, and
F.
Groen
, eds.,
Springer-Verlag
,
Berlin
, pp.
13
17
.
28.
Universidad Jaume I
,
2015
, “
DEVALHAND—BruJa Hand
,” Universidad Jaume I, Castellon, Spain, accessed Sept. 1, 2018, https://sites.google.com/a/uji.es/devalhand/bruja-hand
29.
Pololu Robotics and Electronics
,
2013
, “
250:1 Micro Metal Gearmotor LP 6V
,” Pololu Corp., Las Vegas, NV, accessed July 20, 2017, http://www.pololu.com/product/1095
30.
Peebles
,
L.
, and
Norris
,
B.
,
1998
,
Adult data: The Handbook of Adult Anthropometric and Strength Measurements. Data for Design Safety
, UK Department of Trade and Industry, London, p.
404
.
31.
Binvignat
,
O.
,
Almagià
,
A.
,
Lizana
,
P.
, and
Olave
,
E.
,
2012
, “
Aspectos Biométricos de la Mano de Individuos Chilenos
,”
Int. J. Morphol.
,
30
(
2
), pp.
599
606
.
32.
Dechev
,
N.
,
Cleghorn
,
W. L.
, and
Naumann
,
S.
,
2001
, “
Multiple Finger, Passive Adaptive Grasp Prosthetic Hand
,”
Mech. Mach. Theory
,
36
(
10
), pp.
1157
1173
.
33.
Dincer
,
F.
, and
Samut
,
G.
,
2014
, “
Physical Examination of the Hand
,”
Hand Function: A Practical Guide to Assessment
,
M.
Duruöz
, ed.,
Springer
,
New York
, pp.
23
41
.
34.
Norton
,
R. L.
,
2003
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
Boston, MA
, pp.
83
97
.
35.
León
,
B.
,
Ulbrich
,
S.
,
Diankov
,
R.
,
Puche
,
G.
,
Przybylski
,
M.
,
Morales
,
A.
,
Asfour
,
T.
,
Moisio
,
S.
,
Bohg
,
J.
,
Kuffner
,
J.
, and
Dillmann
,
R.
,
2010
, “
OpenGRASP: A Toolkit for Robot Grasping Simulation
,”
Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2010. Lecture Notes in Computer Science
,
von
S. O.
Ando
N.
,
Balakirsky
S.
,
Hemker
T.
, and
Reggiani
M.
, eds.,
Springer
,
Berlin
, pp.
109
120
.
36.
Miller
,
A. T.
, and
Allen
,
P. K.
,
2004
, “
GraspIt!
,”
IEEE Rob. Autom. Mag.
,
11
(
4
), pp.
110
122
.
37.
Malvezzi
,
M.
,
Gioioso
,
G.
,
Salvietti
,
G.
, and
Prattichizzo
,
D.
,
2015
, “
SynGrasp: A MATLAB Toolbox for Underactuated and Compliant Hands
,”
IEEE Rob. Autom. Mag.
,
22
(
4
), pp.
52
68
.
38.
Denavit
,
J.
, and
Hartenberg
,
R.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
23
(1), pp.
215
221
.
39.
León
,
B.
,
Morales
,
A.
, and
Sancho-Bru
,
J. J.
,
2014
,
From Robot to Human Grasping Simulation
(Cognitive Systems Monographs, Vol.
19
),
Springer International Publishing
,
Cham, Switzerland
, pp.
151
156
.
40.
Diankov
,
R.
,
2010
, “
Automated Construction of Robotic Manipulation Programs
,” Ph.D. dissertation, Carnegie Mellon University, Robotics Institute, Pittsburgh, PA.
41.
Dermitzakis
,
K.
,
Morales
,
M. R.
, and
Schweizer
,
A.
,
2013
, “
Modeling the Frictional Interaction in the Tendon-Pulley System of the Human Finger for Use in Robotics
,”
Artif. Life
,
19
(
1
), pp.
149
169
.
42.
Gurrala
,
P.
, and
Regalla
,
S.
,
2017
, “
Friction and Wear Rate Characteristics of Parts Manufactured by Fused Deposition Modelling Process
,”
Int. J. Rapid Manuf.
,
6
(
4
), pp.
245
261
.
43.
Roa
,
M. A.
, and
Suárez
,
R.
,
2015
, “
Grasp Quality Measures: Review and Performance
,”
Auton. Robots
,
38
(
1
), pp.
65
88
.
44.
Calli
,
B.
,
Wallsman
,
A.
,
Singfh
,
A.
, and
Srinivasa
,
S. S.
,
2015
, “
Benchmarking in Manipulation Research
,”
IEEE Rob. Autom. Mag.
,
22
(
3
), pp.
36
52
.
45.
Biddiss
,
E.
,
Beaton
,
D.
, and
Chau
,
T.
,
2007
, “
Consumer Design Priorities for Upper Limb Prosthetics
,”
Disability Rehabil. Assist. Technol.
,
2
(
6
), pp.
346
357
.
46.
Vergara
,
M.
,
Sancho-Bru
,
J. L.
,
Gracia-Ibáñez
,
V.
, and
Pérez-González
,
A.
,
2014
, “
An Introductory Study of Common Grasps Used by Adults During Performance of Activities of Daily Living
,”
J. Hand Ther.
,
27
(
3
), pp.
225
234
.
47.
Feix
,
T.
,
Romero
,
J.
,
Schmiedmayer
,
H.-B.
,
Dollar
,
A. M.
, and
Kragic
,
D.
,
2016
, “
The GRASP Taxonomy of Human Grasp Types
,”
IEEE Trans. Human-Mach. Syst
,
46
(
1
), pp.
66
77
.
48.
Xiong
,
C.-H.
,
1999
, “
On the Dynamic Stability of Grasping
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
951
958
.
49.
Kim
,
B.
,
Oht
,
S.
,
Yi
,
B.
, and
Suh
,
I. H.
,
2001
, “
Optimal Grasping Based on Non-Dimensionalized Performance Indices
,”
IEEE International Conference on Intelligent Robots and Systems
(
IROS
), Maui, HI, Oct. 29–Nov. 3, pp.
949
956
.
50.
Ferrari
,
C.
, and
Canny
,
J.
,
1992
, “
Planning Optimal Grasps
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Nice, France, May 12–14, pp.
2290
2295
.
51.
Binkley, P., and Hawthorn, P., 2015, “
The Osprey Hand by Alderhand and E-Nable
,” MakerBot Industries LLC, Brooklyn, NY, accessed Apr. 1, 2018, https://www.thingiverse.com/thing:910465
52.
Baril
,
M.
,
Laliberté
,
T.
,
Gosselin
,
C.
, and
Routhier
,
F.
,
2013
, “
On the Design of a Mechanically Programmable Underactuated Anthropomorphic Prosthetic Gripper
,”
ASME J. Mech. Des.
,
135
(
12
), p.
121008
.
53.
Dechev
,
N.
,
2015
, “
Victoria Hand Project
,” Victoria, BC, Canada, accessed Sept. 1, 2017, www.victoriahandproject.com
54.
Polygerinos
,
P.
,
Galloway
,
K.
,
Wang
,
Z.
,
Connolly
,
F.
,
Overvelde
,
J. T. B.
, and
Young
,
H.
, 2014, “
Soft Robotic Prosthetic Hand for Amputees
,” OpenScholar LLC, Boston, MA, , accessed Apr. 30, 2018, https://softroboticstoolkit.com/book/case-study-soft-robotic-prosthetic-hand-amputees-fr
55.
Huchet
,
N.
, 2014, “
Bionicohand: Open Source Myohand
,” Rennes, France, accessed Apr. 30, 2018, https://bionico.org/
56.
Krausz
,
N. E.
,
Rorrer
,
R. A. L.
, and
Weir
,
R. F. F.
,
2016
, “
Design and Fabrication of a Six Degree-of-Freedom Open Source Hand
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, (
5
), pp.
562
572
.
57.
Stoppa
,
M.
, and
Mendes
,
J. C.
,
2014
, “
Kinematic Modeling of a Multifingered Hand Prosthesis for Manipulation Tasks
,” Congresso Nacional de Matematica Aplicada a Industria, Caldas Novas-GO, Brazil, pp.
1
10
.
58.
Huchet
,
N.
,
Ottobock, and Makea Industries
, 2017, “
Open Innovation Space—Bionicohand: Building a Complete Low Cost DIY Prosthesis Based on the HACKberry Hand
,” Berlin, Germany, accessed Sept. 1, 2017, https://www.openinnovationspace.com/en/projects/bionicohand/
59.
Shinjo
,
K.
,
2017
, “
Exiii Hackberry (GitHub Download)
,” GitHub Inc., San Francisco, CA, accessed Sept. 1, 2017, https://github.com/mission-arm/HACKberry
60.
Exiii Hackberry Open Source Community, 2016, “
Exiii Hackberry
,” Exii Inc., Tokyo, Japan, accessed Sept. 1, 2017, http://exiii-hackberry.com/
61.
Griffiths
,
S.
, 2015, “
The Cheap Robotic Hand Set to Revolutionise Prosthetics: 3D-Printed Device Performs Advanced Tasks for a Fraction of the Cost
,” Dailymail (Mailonline), DMG Media, London, accessed Nov. 15, 2017, http://dailym.ai/1UcTSxN
62.
Gibbard
,
J.
, 2014, “
Openbionics (Downloads)
,” Bristol, UK, accessed July 20, 2017, https://www.openbionics.com/downloads/
63.
3ders.org (Alec)
, 2015, “
Wounded War Hero Gets a 3D Printed Dextrus Bionic Hand
,” 3ders.org, Katwijk, The Netherlands, accessed July 20, 2017, https://www.3ders.org/articles/20150411-wounded-war-hero-has-been-provided-with-a-3d-printed-dextrus-bionic-hand.html
64.
Gibbard
,
J.
, 2013, “
Open Hand Project: Downloads
,” Bristol, UK, accessed Sept. 1, 2017, http://www.openhandproject.org/downloads.php
65.
Slade
,
P.
,
Akhtar
,
A.
,
Nguyen
,
M.
, and
Bretl
,
T.
,
2015
, “
Tact: Design and Performance of an Open-Source, Affordable, Myoelectric Prosthetic Hand
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
6451
6456
.
66.
Manero
,
A.
, and
Sparkman
,
J.
,
2015
,“
Limbitless Solutions
,” Limbitless Solutions Inc, Orlando, FL, accessed Sept. 1, 2017, https://limbitless-solutions.org/
67.
UCFArmory, and Enablingthefuture
,
2014
, “
Limbitless Arm
,” MakerBot Industries LLC, Brooklyn, NY, accessed Sept. 1, 2017, https://www.thingiverse.com/thing:408641
68.
van der Riet
,
D.
,
2013
, “
Touch Prosthetics
,” Touch Prosthetics, Berea, Sudáfrica, accessed Sept. 1, 2017, http://touchprosthetics.com/touch-hand/
69.
Jones
,
G.
, and
Stopforth
,
R.
,
2016
, “
Mechanical Design and Development of the Touch Hand II Prosthetic Hand
,”
R&D J. S. Afr. Inst. Mech. Eng.
,
32
, pp.
23
34
.https://cdn.ymaws.com/www.saimeche.org.za/resource/collection/0CB09B0F-7B31-4169-AD86-42748032E24B/2015_16_JONES_AND_STOPFORTH_-_FINAL,_2016,_32,_23-34.pdf
70.
Jones
,
G. K.
,
Rosendo
,
A.
, and
Stopforth
,
R.
,
2017
, “
Prosthetic Design Directives: Low-Cost Hands Within Reach
,”
IEEE International Conference on Rehabilitation Robotics (ICORR)
, pp.
1524
1530
.
71.
Turing Laboratory—Galileo University
,
2016
, “
Galileo Bionic Hand
,” Galileo University, Guatemala, Guatemala, accessed Sept. 1, 2017, http://turing-lab.github.io/project/Galileo-Hand.html
72.
Fajardo
,
J.
, and
Lemus
,
A.
,
2015
, “
Galileo Bionic Hand: SEMG Activated Approaches for a Multifunction Upper-Limb Prosthetics
,”
IEEE
XXXV Central American and Panama Convention, Tegucigalpa, Honduras, Nov. 11–13, pp. 1–6.
73.
Fajardo
,
J.
,
Ferman
,
V.
,
Lemus
,
A.
, and
Rohmer
,
E.
,
2017
, “
An Affordable Open-Source Multifunctional Upper-Limb Prosthesis With Intrinsic Actuation
,”
IEEE
Workshop on Advanced Robotics and its Social Impacts,
Austin, TX, Mar. 8–10, pp.
1
6
.
74.
Bloedorn
,
M. V.
,
2015
, “
Biohand
,” Supply Frame Inc., Pasadena, CA, accessed Oct. 1, 2017, https://hackaday.io/post/19887
75.
LaChappelle
,
E.
,
2015
, “
Robotic Arm v1.0
,” Unlimited Tomorrow, CO, accessed Sept. 1, 2017, http://theroboarm.com/overview.html
76.
Slade
,
P.
,
2014
, “
Tact Hand
,” GitHub Inc., San Francisco, CA, accessed Sept. 1, 2017, https://github.com/pslade2/TactHand
77.
Slade
,
P.
,
2017
, “
Patrick Slade
,” Stanford, CA, accessed Sept. 1, 2017, https://patslade.com/tact-hand/
78.
Rossi
,
O.
,
2016
, “
FABLE-Fingers Activated by Low cost Electronics
,” GitHub Inc., San Francisco, CA, accessed Sept. 1, 2017, https://github.com/openbiomedical/OBM-FABLE
79.
Lenzi
,
B.
,
2014
, “
Open BioMedical Initiative
,” Naples, Italy, accessed Sept. 1, 2017, http://www.openbiomedical.org/
80.
Catalano
,
M.
,
Grioli
,
G.
,
Garabini
,
M.
,
Gabiccini
,
M.
,
Malagia
,
L.
,
Brando
,
A.
,
Piazza
,
C.
,
Serio
,
A.
,
Bonomo
,
F.
,
Basco
,
A. D.
, and
Bicchi
,
A.
,
2014
, “
Pisa/IIT SoftHand CAD
,” BIZX LLC, San Diego, CA, accessed Apr. 27, 2018, http://sourceforge.net/projects/nmmiwebsite/files/softhand/pisa_iit_softhand_v01.zip/download
81.
Bonilla
,
M.
,
Farnioli
,
E.
,
Piazza
,
C.
,
Catalano
,
M.
,
Grioli
,
G.
,
Garabini
,
M.
,
Gabiccini
,
M.
, and
Bicchi
,
A.
,
2014
, “
Grasping With Soft Hands
,”
IEEE-RAS
International Conference on Humanoid Robots
, Madrid, Spain, Nov. 18–20, pp.
581
587
.
82.
Catalano
,
M. G.
,
Grioli
,
G.
,
Serio
,
A.
,
Farnioli
,
E.
,
Piazza
,
C.
, and
Bicchi
,
A.
,
2012
, “
Adaptive Synergies for a Humanoid Robot Hand
,”
IEEE-RAS
International Conference on Humanoid Robots
, Osaka, Japan, Nov. 29–Dec. 1, pp.
7
14
.
83.
Centro di ricerca “
E. Piaggio
,” 2017, “
The PISA/IIT SoftHand
,” University of Pisa, Pisa, Italy, accessed Apr. 28, 2018, http://www.centropiaggio.unipi.it/pisaiit-softhand
You do not currently have access to this content.