The cost of therapy is one of the most significant barriers to recovery after neurological injury. Robotic gait trainers move the legs through repetitive, natural motions imitating gait. Recent meta-analyses conclude that such training improves walking function in neurologically impaired individuals. While robotic gait trainers promise to reduce the physical burden on therapists and allow greater patient throughput, they are prohibitively costly. Our novel approach is to design a new single degree-of-freedom (DoF) robotic trainer that maintains the key advantages of the expensive trainers but with a simplified design to reduce cost. Our primary design challenge is translating the motion of a single actuator to an array of natural gait trajectories. We address this with an eight-link Jansen mechanism that matches a generalized gait trajectory. We then optimize the mechanism to match different trajectories through link length adjustment based on nine different gait patterns obtained from gait database of 113 healthy individuals. To physically validate the range in gait patterns produced by the simulation, we tested kinematic accuracy on a motorized wooden proof-of-concept of the gait trainer. The simulation and experimental results suggested that an adjustment of two links can reasonably fit a wide range of gait patterns under typical within-subject variance. We conclude that this design could provide the basis for a low-cost, patient-based electromechanical gait trainer for neurorecovery.

References

1.
Mozaffarian
,
D.
,
Benjamin
,
E. J.
,
Go
,
A. S.
,
Arnett
,
D. K.
,
Blaha
,
M. J.
,
Cushman
,
M.
,
Das
,
S. R.
,
de Ferranti
,
S.
,
Després
,
J.
,
Fullerton
,
H. J.
,
Howard
,
V. J.
,
Huffman
,
M. D.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Judd
,
S. E.
,
Kissela
,
B. M.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Liu
,
S.
,
Mackey
,
R. H.
,
Magid
,
D. J.
,
McGuire
,
D. K.
,
Mohler
,
E. R.
,
Moy
,
C. S.
,
Muntner
,
P.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
Neumar
,
R. W.
,
Nichol
,
G.
,
Palaniappan
,
L.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Rodriguez
,
C. J.
,
Rosamond
,
W.
,
Sorlie
,
P. D.
,
Stein
,
J.
,
Towfighi
,
A.
,
Turan
,
T. N.
,
Virani
,
S. S.
,
Woo
,
D.
,
Yeh
,
R. W.
, and
Turner
,
M. B.
,
2016
, “
Executive Summary: Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association
,”
Circulation
,
133
(
4
), pp.
447
454
.
2.
Godwin
,
K. M.
,
Wasserman
,
J.
, and
Ostwald
,
S. K.
,
2011
, “
Cost Associated With Stroke: Outpatient Rehabilitative Services and Medication
,”
Top. Stroke Rehabil.
,
18
(
Suppl. 1
), pp.
676
684
.
3.
Colombo
,
G.
,
Joerg
,
M.
,
Schreier
,
R.
, and
Dietz
,
V.
,
2000
, “
Treadmill Training of Paraplegic Patients With a Robotic Orthosis
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp. 693–700.https://www.rehab.research.va.gov/jour/00/37/6/abscolombo.htm
4.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.
5.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
Van der Helm
,
F. C. T.
, and
Van der Kooij
,
H.
,
2005
, “
Design of a Series Elastic-and Bowden Cable-Based Actuation System for Use as Torque-Actuator in Exoskeleton-Type Training
,”
Ninth International Conference on Rehabilitation Robotics
(
ICORR
), Chicago, IL, June 28–July 1, pp.
496
499
.
6.
Hesse
,
S.
, and
Uhlenbrock
,
D.
,
2000
, “
A Mechanized Gait Trainer for Restoration of Gait
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
701
708
.https://www.rehab.research.va.gov/jour/00/37/6/abshesse.htm
7.
Schmid
,
H.
,
Hesse
,
S.
,
Benhardt
,
R.
, and
Kruger
,
J.
,
2005
, “
Haptic Walker—A Novel HaPtic Foot Device
,”
ACM Trans. Appl. Percept.
,
2
(
2
), pp.
166
180
.
8.
Freivogel
,
S.
,
Mehrholz
,
J.
,
Husak-Sotomayor
,
T.
, and
Schmalohr
,
D.
,
2008
, “
Gait Training With the Newly Developed ‘LokoHelp’-System is Feasible for Non-Ambulatory Patients After Stroke, Spinal Cord and Brain Injury. A Feasibility Study
,”
Brain Inj.
,
22
(
7–8
), pp.
625
632
.
9.
Mehrholz
,
J.
, and
Pohl
,
M.
,
2012
, “
Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices
,”
J. Rehabil. Med.
,
44
(
3
), pp.
193
199
.
10.
Hesse
,
S.
,
Bertelt
,
C.
,
Jahnke
,
M. T.
,
Schaffrin
,
A.
,
Baake
,
P.
,
Malezic
,
M.
, and
Mauritz
,
K. H.
,
1995
, “
Treadmill Training With Partial Body Weight Support Compared With Physiotherapy in Nonambulatory Hemiparetic Patients
,”
Stroke
,
26
(
6
), pp.
976
981
.
11.
Pohl
,
M.
,
Werner
,
C.
,
Holzgraefe
,
M.
,
Kroczek
,
G.
,
Mehrholz
,
J.
,
Wingendorf
,
I.
,
Hoölig
,
G.
,
Koch
,
R.
, and
Hesse
,
S.
,
2007
, “
Repetitive Locomotor Training and Physiotherapy Improve Walking and Basic Activities of Daily Living After Stroke: A Single-Blind, Randomized Multicentre Trial (DEutsche GAngtrainerStudie, DEGAS)
,”
Clin. Rehabil.
,
21
(
1
), pp.
17
27
.
12.
Hesse
,
S.
,
Werner
,
C.
,
Uhlenbrock
,
D.
,
Frankenberg
,
S. V.
,
Bardeleben
,
A.
, and
Brandl-Hesse
,
B.
,
2001
, “
An Electromechanical Gait Trainer for Restoration of Gait in Hemiparetic Stroke Patients: Preliminary Results
,”
Neurorehabil. Neural Repair
,
15
(
1
), pp.
39
50
.
13.
Werner
,
C.
,
Von Frankenberg
,
S.
,
Treig
,
T.
,
Konrad
,
M.
, and
Hesse
,
S.
,
2002
, “
Treadmill Training With Partial Body Weight Support and an Electromechanical Gait Trainer for Restoration of Gait in Subacute Stroke Patients a Randomized Crossover Study
,”
Stroke
,
33
(
12
), pp.
2895
2901
.
14.
Mayr
,
A.
,
Kofler
,
M.
,
Quirbach
,
E.
,
Matzak
,
H.
,
Fröhlich
,
K.
, and
Saltuari
,
L.
,
2007
, “
Prospective, Blinded, Randomized Crossover Study of Gait Rehabilitation in Stroke Patients Using the Lokomat Gait Orthosis
,”
Neurorehabil. Neural Repair.
,
21
(
4
), pp.
307
314
.
15.
Simons
,
C. D. M.
,
van Asseldonk
,
E. H. F.
,
Folkersma
,
J. I.
,
van den Hoek
,
J.
,
Postma
,
M.
, and
Buurke
,
J. H.
,
2009
, “
First Clinical Results With the New Innovative Robotic Gait Trainer LOPES
,”
Gait Posture
,
30
(
2
), p.
S7
.
16.
Mehrholz
,
J.
,
Thomas
,
S.
,
Werner
,
C.
,
Kugler
,
J.
,
Pohl
,
M.
, and
Elsner
,
B.
,
2017
, “
Electromechanical-Assisted Training for Walking After Stroke
,”
Cochrane Database Syst. Rev.
,
5
, p. CD006185.
17.
Nam
,
K. Y.
,
Kim
,
H. J.
,
Kwon
,
B. S.
,
Park
,
J. W.
,
Lee
,
H. J.
, and
Yoo
,
A.
,
2017
, “
Robot-Assisted Gait Training (Lokomat) Improves Walking Function and Activity in People With Spinal Cord Injury: A Systematic Review
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
24
.
18.
Husemann
,
B.
,
Müller
,
F.
,
Krewer
,
C.
,
Heller
,
S.
, and
Koenig
,
E.
,
2007
, “
Effects of Locomotion Training With Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients After Stroke a Randomized Controlled Pilot Study
,”
Stroke
,
38
(
2
), pp.
349
354
.
19.
Peurala
,
S. H.
,
Tarkka
,
I. M.
,
Pitkänen
,
K.
, and
Sivenius
,
J.
,
2005
, “
The Effectiveness of Body Weight-Supported Gait Training and Floor Walking in Patients With Chronic Stroke
,”
Arch. Phys. Med. Rehabil.
,
86
(
8
), pp.
1557
1564
.
20.
Westlake
,
K. P.
, and
Patten
,
C.
,
2009
, “
Pilot Study of Lokomat versus Manual-Assisted Treadmill Training for Locomotor Recovery Post-Stroke
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
18
.
21.
Robotics Business Review
,
2014
, “
Healthcare Robotics: 2014, Leading Robotics Companies, Their Technology, Markets and Future
,” Robotics Business Review, Framingham MA, accessed Feb. 21, 2015, https://www.roboticsbusinessreview.com/download/research-report-healthcare-robotics-2014/
22.
Patrick
,
M.
, 2014, “
Overview: Assessing Hospital Companies' Capital Expenditures, in an Investor's Guide to the US Hospital Industry PART 11 OF 16, Market Realist
,” Market Realist Inc., New York, accessed, Nov. 16, 2014, https://marketrealist.com/2014/11/understanding-structure-us-hospital-industry
23.
Freivogel
,
S.
,
Schmalohr
,
D.
, and
Mehrholz
,
J.
,
2009
, “
Improved Walking Ability and Reduced Therapeutic Stress With an Electromechanical Gait Device
,”
J. Rehabil. Med.
,
41
(
9
), pp.
734
739
.
24.
Beres-Jones
,
J. A.
, and
Harkema
,
S. J.
,
2004
, “
The Human Spinal Cord Interprets Velocity-Dependent Afferent Input During Stepping
,”
Brain
,
127
(
10
), pp.
2232
2246
.
25.
Dietz
,
V.
,
Colombo
,
G.
, and
Jensen
,
L.
,
1994
, “
Locomotor Activity in Spinal Man
,”
Lancet
,
344
(
8932
), pp.
1260
1263
.
26.
Laufer
,
Y.
,
Dickstein
,
R.
,
Chefez
,
Y.
, and
Marcovitz
,
E.
,
2001
, “
The Effect of Treadmill Training on the Ambulation of Stroke Survivors in the Early Stages of Rehabilitation
,”
J. Rehabil. Res. Dev.
,
38
(
1
), pp. 69–78.https://www.rehab.research.va.gov/jour/01/38/1/laufer.html
27.
Macko
,
R. F.
,
Ivey
,
F. M.
,
Forrester
,
L. W.
,
Hanley
,
D.
,
Sorkin
,
J. D.
,
Katzel
,
L. I.
,
Silver
,
K. H.
, and
Goldberg
,
A. P.
,
2005
, “
Treadmill Exercise Rehabilitation Improves Ambulatory Function and Cardiovascular Fitness in Patients With Chronic Stroke a Randomized, Controlled Trial
,”
Stroke
,
36
(
10
), pp.
2206
2211
.
28.
Dietz
,
V.
,
2002
, “
Proprioception and Locomotor Disorders
,”
Nat. Rev. Neurosci.
,
3
(
10
), pp.
781
790
.
29.
Jansen
,
B.
,
Doubrovski
,
E. L.
, and
Verlinden
,
J. C.
,
2014
, “
Animaris Geneticus Parvus: Design of a Complex Multi-Body Walking Mechanism
,”
Rapid Prototyp. J.
,
20
(
4
), pp.
311
319
.
30.
Cunningham
,
D. A.
,
Rechnitzer
,
P. A.
,
Pearce
,
M. E.
, and
Donner
,
A. P.
,
1982
, “
Determinants of Self-Selected Walking Pace Across Ages 19 to 66
,”
J. Gerontol.
,
37
(
5
), pp.
560
564
.
31.
Koopman
,
B.
,
Van Asseldonk
,
E. H. F.
, and
Van der Kooij
,
H.
,
2014
, “
Speed-Dependent Reference Joint Trajectory Generation for Robotic Gait Support
,”
J. Biomech.
,
47
(
6
), pp.
1447
1458
.
32.
Yun
,
Y.
,
Kim
,
H. C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.
33.
Norton
,
R. L.
,
2004
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
, New York.
34.
Ravindran
,
A.
,
Reklaitis
,
G. V.
, and
Ragsdell
,
K. M.
,
2006
,
Engineering Optimization: Methods and Applications
,
Wiley
, Hoboken, NJ.
35.
Kora
,
K.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2017
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), p.
014503
.
36.
Jung
,
C. Y.
,
Choi
,
J.
,
Park
,
S.
,
Lee
,
J. M.
,
Kim
,
C.
, and
Kim
,
S. J.
,
2014
, “
Design and Control of an Exoskeleton System for Gait Rehabilitation Capable of Natural Pelvic Movement
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Chicago, IL, Sept. 14–18, pp.
2095
2100
.
37.
Morone
,
G.
,
Paolucci
,
S.
,
Cherubini
,
A.
,
De Angelis
,
D.
,
Venturiero
,
V.
,
Coiro
,
P.
, and
Iosa
,
M.
,
2017
, “
Robot-Assisted Gait Training for Stroke Patients: Current State of the Art and Perspectives of Robotics
,”
Neuropsychiatr. Dis. Treat.
,
15
(
13
), pp.
1303
1311
.
38.
van Asseldonk
,
E. H. F.
,
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Buurke
,
J. H.
,
van der Helm
,
F. C. T.
, and
van der Kooij
,
H.
,
2008
, “
The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
16
(
4
), pp.
360
370
.
39.
Duschau-Wicke
,
A.
,
von Zitzewitz
,
J.
,
Caprez
,
A.
,
Lunenburger
,
L.
, and
Riener
,
R.
,
2010
, “
Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
18
(
1
), pp.
38
48
.
40.
Riener
,
R.
,
2016
, “
Technology of the Robotic Gait Orthosis Lokomat
,”
Neurorehabilitation Technology
,
D.
Reinkensmeyer
and
V.
Dietz
, eds.,
Springer
,
Cham, Switzerland
, pp.
395
407
.
41.
Tan
,
A. Q.
, and
Dhaher
,
Y. Y.
,
2014
, “
Evaluation of Lower Limb Cross Planar Kinetic Connectivity Signatures Post-Stroke
,”
J. Biomech.
,
47
(
5
), pp.
949
956
.
You do not currently have access to this content.