Gravity compensation of spatial parallel manipulators is a relatively recent topic of investigation. Perfect balancing has been accomplished, so far, only for parallel mechanisms in which the weight of the moving platform is sustained by legs comprising purely rotational joints. Indeed, balancing of parallel mechanisms with translational actuators, which are among the most common ones, has been traditionally thought possible only by resorting to additional legs containing no prismatic joints between the base and the end-effector. This paper presents the conceptual and mechanical designs of a balanced Gough/Stewart-type manipulator, in which the weight of the platform is entirely sustained by the legs comprising the extensible jacks. By the integrated action of both elastic elements and counterweights, each leg is statically balanced and it generates, at its tip, a constant force contributing to maintaining the end-effector in equilibrium in any admissible configuration. If no elastic elements are used, the resulting manipulator is balanced with respect to the shaking force too. The performance of a study prototype is simulated via a model in both static and dynamic conditions, in order to prove the feasibility of the proposed design. The effects of imperfect balancing, due to the difference between the payload inertial characteristics and the theoretical/nominal ones, are investigated. Under a theoretical point of view, formal and novel derivations are provided of the necessary and sufficient conditions allowing (i) a body arbitrarily rotating in space to rest in neutral equilibrium under the action of general constant-force generators, (ii) a body pivoting about a universal joint and acted upon by a number of zero-free-length springs to exhibit constant potential energy, and (iii) a leg of a Gough/Stewart-type manipulator to operate as a constant-force generator.

1.
Rivin
,
E. I.
, 1988,
Mechanical Design of Robots
,
McGraw-Hill
,
New York
, Sec. 3.5.
2.
Asada
,
H.
, and
Youcef-Toumi
,
K.
, 1984, “
Analysis and Design of a Direct-Drive Arm With a Five-Bar-Link Parallel Drive Mechanism
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
106
(
3
), pp.
225
230
.
3.
Mahalingam
,
S.
, and
Sharan
,
A.
, 1986, “
The Optimal Balancing of the Robotic Manipulators
,”
1986 IEEE International Conference on Robotics and Automation
, San Francisco, CA, pp.
828
835
.
4.
Gopalswamy
,
A.
,
Gupta
,
P.
, and
Vidyasagar
,
M.
, 1992, “
A New Parallelogram Linkage Configuration for Gravity Compensation Using Torsional Springs
,”
1992 IEEE International Conference on Robotics and Automation
, Nice, France, pp.
664
669
.
5.
Kolarski
,
M.
,
Vukobratović
,
M.
, and
Borovac
,
B.
, 1994, “
Dynamic Analysis of Balanced Robot Mechanisms
,”
Mech. Mach. Theory
0094-114X,
29
(
3
), pp.
427
454
.
6.
Kazerooni
,
H.
, 1989, “
Statically Balanced Direct Drive Manipulator
,”
Robotica
0263-5747,
7
(
2
), pp.
143
149
.
7.
Lowen
,
G. G.
,
Tepper
,
F. R.
, and
Berkof
,
R. S.
, 1974, “
The Quantitative Influence of Complete Force Balancing on the Forces and Moments of Certain Families of Four-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
9
(
3/4
), pp.
299
323
.
8.
Lim
,
T. G.
,
Cho
,
H. S.
, and
Chung
,
W. K.
, 1990, “
Payload Capacity of Balanced Robotic Manipulators
,”
Robotica
0263-5747,
8
(
2
), pp.
117
123
.
9.
Diken
,
H.
, 1995, “
Effect of Mass Balancing on the Actuator Torques of a Manipulator
,”
Mech. Mach. Theory
0094-114X,
30
(
4
), pp.
495
500
.
10.
Abdel-Rahman
,
T. M.
, and
Elbestawi
,
M. A.
, 1991, “
Synthesis and Dynamics of Statically Balanced Direct-Drive Manipulators With Decoupled Inertia Tensors
,”
Mech. Mach. Theory
0094-114X,
26
(
4
), pp.
389
402
.
11.
Martini
,
A.
,
Troncossi
,
M.
,
Carricato
,
M.
, and
Rivola
,
A.
, 2009, “
Modal and Kineto-Elastodynamic Analyses of Balanced Four-Bar Linkages
,” Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland.
12.
Hilpert
,
H.
, 1968, “
Weight Balancing of Precision Mechanical Instruments
,”
J. Mech.
0022-2569,
3
(
4
), pp.
289
302
.
13.
Lowen
,
G. G.
, and
Berkof
,
R. S.
, 1968, “
Survey of Investigations Into the Balancing of Linkages
,”
J. Mech.
0022-2569,
3
(
4
), pp.
221
231
.
14.
Lowen
,
G. G.
,
Tepper
,
F. R.
, and
Berkof
,
R. S.
, 1983, “
Balancing of Linkages—An Update
,”
Mech. Mach. Theory
0094-114X,
18
(
3
), pp.
213
220
.
15.
Arakelian
,
V. H.
, and
Smith
,
M. R.
, 2005, “
Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples
,”
ASME J. Mech. Des.
0161-8458,
127
(
2
), pp.
334
339
.
16.
Arakelian
,
V. H.
, and
Smith
,
M. R.
, 2005, “
Erratum: Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
1034
1035
.
17.
Tepper
,
F. R.
, and
Lowen
,
G. G.
, 1972, “
General Theorems Concerning Full Force Balancing of Planar Linkages by Internal Mass Redistribution
,”
ASME J. Eng. Ind.
0022-0817,
94B
(
3
), pp.
789
796
.
18.
Walker
,
M. J.
, and
Oldham
,
K.
, 1978, “
A General Theory of Force Balancing Using Counterweights
,”
Mech. Mach. Theory
0094-114X,
13
(
2
), pp.
175
185
.
19.
Chen
,
N. -X.
, 1984, “
The Complete Shaking Force Balancing of a Spatial Linkage
,”
Mech. Mach. Theory
0094-114X,
19
(
2
), pp.
243
255
.
20.
Kochev
,
I. S.
, 1987, “
General Method for Full Force Balancing of Spatial and Planar Linkages by Internal Mass Redistribution
,”
Mech. Mach. Theory
0094-114X,
22
(
4
), pp.
333
341
.
21.
Minotti
,
P.
, and
Dahan
,
M.
, 1988, “
Ressorts et mécanismes: Une solution aux problèmes d’équilibrage
,”
Mech. Mach. Theory
0094-114X,
23
(
2
), pp.
157
168
.
22.
Streit
,
D. A.
, and
Gilmore
,
B. J.
, 1989, “
‘Perfect’ Spring Equilibrators for Rotatable Bodies
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
451
458
.
23.
Streit
,
D. A.
, and
Shin
,
E.
, 1993, “
Equilibrators for Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
(
3
), pp.
604
611
.
24.
Laliberté
,
T.
,
Gosselin
,
C. M.
, and
Jean
,
M.
, 1999, “
Static Balancing of 3-DOF Planar Parallel Mechanisms
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
4
), pp.
363
377
.
25.
Streit
,
D. A.
,
Chung
,
H.
, and
Gilmore
,
B. J.
, 1991, “
Perfect Equilibrators for Rigid Body Spatial Rotations About a Hooke’s Joint
,”
ASME J. Mech. Des.
0161-8458,
113
(
4
), pp.
500
507
.
26.
Walsh
,
G. J.
,
Streit
,
D. A.
, and
Gilmore
,
B. J.
, 1991, “
Spatial Spring Equilibrator Theory
,”
Mech. Mach. Theory
0094-114X,
26
(
2
), pp.
155
170
.
27.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
, 1995, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
655
658
.
28.
Tuijthof
,
G. J. M.
, and
Herder
,
J. L.
, 2000, “
Design, Actuation and Control of an Anthropomorphic Robot Arm
,”
Mech. Mach. Theory
0094-114X,
35
(
7
), pp.
945
962
.
29.
Wongratanaphisan
,
T.
, and
Chew
,
M.
, 2002, “
Gravity Compensation of Spatial Two-DOF Serial Manipulators
,”
J. Rob. Syst.
0741-2223,
19
(
7
), pp.
329
347
.
30.
Agrawal
,
S. K.
, and
Fattah
,
A.
, 2004, “
Gravity-Balancing of Spatial Robotic Manipulators
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1331
1344
.
31.
Streit
,
D. A.
, 1991, “
Spatial Manipulator and Six Degree of Freedom Platform—Spring Equilibrator Theory
,”
Second National Conference on Applied Mechanisms and Robotics
, Cincinnati, OH, pp.
VIIIB.1.1
VIIIB.1.6
.
32.
Gosselin
,
C. M.
, 1999, “
Static Balancing of Spherical 3-DOF Parallel Mechanisms and Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
8
), pp.
819
829
.
33.
Gosselin
,
C. M.
, and
Wang
,
J.
, 2000, “
Static Balancing of Spatial Six-Degree-of-Freedom Parallel Mechanisms With Revolute Actuators
,”
J. Rob. Syst.
0741-2223,
17
(
3
), pp.
159
170
.
34.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
, and
Laliberté
,
T.
, 2000, “
Static Balancing of Spatial Parallel Platform Mechanisms—Revisited
,”
ASME J. Mech. Des.
0161-8458,
122
(
1
), pp.
43
51
.
35.
Moppert
,
C. F.
, 1974, “
A Self-Balancing Crane
,”
Mech. Mach. Theory
0094-114X,
9
(
3/4
), pp.
359
366
.
36.
Yu
,
Y. -Q.
, 1988, “
Complete Shaking Force and Shaking Moment Balancing of Spatial Irregular Force Transmission Mechanisms Using Additional Links
,”
Mech. Mach. Theory
0094-114X,
23
(
4
), pp.
279
285
.
37.
Chung
,
W. K.
, and
Cho
,
H. S.
, 1987, “
On the Dynamics and Control of Robotic Manipulators With an Automatic Balancing Mechanism
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
201
(
B1
), pp.
25
34
.
38.
Chung
,
W. K.
, and
Cho
,
H. S.
, 1988, “
Sensitivity Analysis of Balanced Robotic Manipulators
,”
Robotica
0263-5747,
6
(
1
), pp.
53
62
.
39.
Berkof
,
R. S.
, and
Lowen
,
G. G.
, 1969, “
A New Method for Completely Force Balancing Simple Linkages
,”
ASME J. Eng. Ind.
0022-0817,
91B
(
1
), pp.
21
26
.
40.
Shieh
,
W. -B.
,
Chen
,
D. -Z.
, and
Lin
,
P. -Y.
, 2007, “
Design of Statically Balanced Planar Four-Bar Linkages With Base-Attached Springs
,”
12th IFToMM World Congress
, Besançon, France.
41.
Herder
,
J. L.
, 2001, “
Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, Delft University of Technology.
42.
Bagci
,
C.
, 1983, “
Complete Balancing of Space Mechanisms—Shaking Force Balancing
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
(
4
), pp.
609
616
.
43.
Fichter
,
E. F.
, 1986, “
A Stewart Platform-Based Manipulator: General Theory and Practical Construction
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
157
182
.
44.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
, 2008, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
072305
.
45.
Carricato
,
M.
, and
Gosselin
,
C.
, 2009, “
On the Modeling of Leg Constraints in the Dynamic Analysis of Gough/Stewart-Type Platforms
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
1
), p.
011008
.
46.
Nathan
,
R. H.
, 1985, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
4
), pp.
508
512
.
You do not currently have access to this content.