In this paper, the mobility, the kinematic constraints, the pose of the end-effector, and the static constraints that lead to the kinematostatic model of a compliant parallel mechanism are introduced. A formulation is then provided for its instantaneous variation—the quasi-static model. This new model allows the calculation of the variation in the pose as a linear function of the motion of the actuators and the variation in the external loads through two new matrices: the compliant Jacobian matrix and the Cartesian compliance matrix that give a simple and meaningful formulation of the model of the mechanism. Finally, a simple application to a planar four-bar mechanism is presented to illustrate the use of this model and the new possibilities that it opens, notably the study of the kinematics for any range of applied load.

1.
Howell
,
L.
, 2001,
Compliant Mechanisms
,
Wiley-Interscience
,
New York
.
2.
Kim
,
C.
,
Moon
,
Y.
, and
Kota
,
S.
, 2008, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
022308
.
3.
Kövecses
,
J.
, and
Angeles
,
J.
, 2007, “
The Stiffness Matrix in Elastically Articulated Rigid-Body Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
169
184
. 1384-5640
4.
Moon
,
Y. -M.
,
Trease
,
B.
, and
Kota
,
S.
, 2002, “
Design of Large-Displacement Compliant Joints
,”
Proceedings of the ASME Design Engineering Technical Conferences and Computer and Information in Engineering Conference
.
5.
Quennouelle
,
C.
, and
Gosselin
,
C.
, 2007, “
Static Equilibrium and Kinemato-Static Model of Planar Compliant Parallel Mechanisms
,” Laboratoire de robotique de l’Université Laval, Québec, Canada, Technical Report.
6.
Wang
,
Y.
, and
Gosselin
,
C.
, 2004, “
On the Design of a 3-PRRR Spatial Parallel Compliant Mechanism
,”
Proceedings of the ASME Mechanisms and Robotics Conference
.
7.
Yi
,
B.
,
Chung
,
G.
,
Na
,
H.
,
Kim
,
W.
, and
Suh
,
I.
, 2003, “
Design and Experiment of a 3-DOF Parallel Micromechanism Utilizing Flexure Hinges
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
604
612
.
8.
Chen
,
S.
, and
Kao
,
I.
, 2000, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Robot. Res.
0278-3649,
19
(
9
), pp.
835
847
.
9.
Kao
,
I.
, and
Ngo
,
C.
, 1999, “
Properties of the Grasp Stiffness Matrix and Conservative Control Strategies
,”
Int. J. Robot. Res.
0278-3649,
18
(
2
), pp.
159
167
.
10.
Cho
,
W.
,
Tesar
,
D.
, and
Freeman
,
R.
, 1989, “
The Dynamic and Stiffness Modeling of General Robotic Manipulator Systems With Antagonistic Actuation
,”
Proceedings of the 1989 IEEE International Conference on Robotics and Automation
, pp.
1380
1387
.
11.
Yin
,
J.
,
Marsh
,
D.
, and
Duffy
,
J.
, 1998, “
Catastrophe Analysis of Planar Three-Spring Systems
,”
Proceedings of the ASME Mechanisms and Robotics Conference
.
12.
Carricato
,
M.
,
Duffy
,
J.
, and
Parenti-Castelli
,
V.
, 2002, “
Catastrophe Analysis of a Planar System With Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
7
), pp.
693
716
.
13.
Opdahl
,
P.
,
Jensen
,
B.
, and
Howell
,
L.
, 1998, “
An Investigation Into Compliant Bistable Mechanisms
,”
Proceedings of the 1998 ASME Design Engineering Technical Conferences
.
14.
Su
,
H. -J.
, and
McCarthy
,
J.
, 2006, “
A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
776
786
.
15.
Sönmez
,
Ü.
, and
Tutum
,
C.
, 2008, “
A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
042304
.
16.
Griffis
,
M.
, and
Duffy
,
J.
, 1991, “
Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,”
ASME J. Mech. Des.
0161-8458,
113
(
4
), pp.
508
515
.
17.
Zhang
,
D.
, and
Gosselin
,
C.
, 2002, “
Kinetostatic Modeling of Parallel Mechanisms With a Passive Constraining Leg and Revolute Actuators
,”
Mech. Mach. Theory
0094-114X,
37
(
6
), pp.
599
617
.
18.
Salisbury
,
J.
, 1980, “
Active Stiffness Control of a Manipulator in Cartesian Coordinates
,”
Proceedings of the 19th IEEE Conference on Decision and Control
, pp.
87
97
.
19.
Griffis
,
M.
, and
Duffy
,
J.
, 1993, “
Global Stiffness Modeling of a Class of Simple Compliant Couplings
,”
Mech. Mach. Theory
0094-114X,
28
(
2
), pp.
207
224
.
20.
Chen
,
S.
, and
Kao
,
I.
, 2002, “
Geometrical Approach to the Conservative Congruence Transformation (CCT) for Robotic Stiffness Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’02
, Vol.
1
.
21.
Svinin
,
M.
,
Hosoe
,
S.
, and
Uchiyama
,
M.
, 2001, “
On the Stiffness and Stability of Gough-Stewart Platforms
,”
Proceedings of the 2001 IEEE International Conference on Robotics and Automation, ICRA
, Vol.
4
.
22.
Quennouelle
,
C.
, and
Gosselin
,
C.
, 2008, “
Stiffness Matrix of Compliant Parallel Mechanisms
,”
Proceedings of the ASME Mechanisms and Robotics Conference
.
23.
Howard
,
S.
,
Zefran
,
M.
, and
Kumar
,
V.
, 1998, “
On the 6×6 Cartesian Stiffness Matrix for Three-Dimensional Motions
,”
Mech. Mach. Theory
0094-114X,
33
(
4
), pp.
389
408
.
24.
Chen
,
S.
, 2005, “
The Spatial Conservative Congruence Transformation for Manipulator Stiffness Modeling With Coordinate and Noncoordinate Bases
,”
J. Rob. Syst.
0741-2223,
22
(
1
), pp.
31
44
.
25.
Žefran
,
M.
, and
Kumar
,
V.
, 2002, “
A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,”
ASME J. Mech. Des.
0161-8458,
124
(
1
), pp.
30
38
.
26.
Carricato
,
M.
,
Duffy
,
J.
, and
Parenti-Castelli
,
V.
, 2000, “
The Stiffness Matrix and the Hessian Matrix of the Total Potential Energy in Mechanisms
,” University of Bologna, DIEM, Publication No. 111, pp.
1
17
.
27.
Hunt
,
K.
, 1978,
Kinematic Geometry of Mechanisms
,
Clarendon
,
Oxford
.
28.
Paul
,
B.
, 1979,
Kinematics and Dynamics of Planar Machinery
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
29.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
, 1998, “
Singularity-Free Evolution From One Configuration to Another in Serial and Fully-Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
120
(
1
), pp.
73
79
.
You do not currently have access to this content.