The current design algorithms for compliant mechanisms often generate solutions that imitate rigid-body linkages by means of point flexures or flexure pivots, by using the popular spring model formulation. This paper presents a kinetoelastic formulation for compliant mechanism optimization. With a state equation of the mechanism defined by the elasticity theory, the model incorporates not only the kinematic function requirements of the mechanism but, more importantly, the necessary conditions on the compliance characteristics of the mechanism’s structure. The kinematics of the compliant mechanism is defined on rigid bodies of input/output ports and is related to a set of kinetoelastic factors of the mechanism’s compliance matrix. The kinetoelastic formulation is applied to the problem of optimizing a compliant translational joint, producing compliant designs with compliance properties such as the leaf spring type sliding joint as opposed to the notch-type joint. This paper represents an initial development toward a more general methodology for compliant mechanism optimization.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
495
526
.
3.
Paros
,
J.
, and
Weiabord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
0024-9114,
37
, pp.
151
156
.
4.
Burns
,
R. H.
, and
Crossley
,
F.
, 1968, “
Kineto-Static Synthesis of Flexible Link Mechanisms
,” ASME Paper No. 68-Mech-36.
5.
Howell
,
L. L.
, and
Midha
,
A.
, 1996, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
121
125
.
6.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
Proceedings of the 1994 ASME Winter Annual Meeting, Dynamic Systems and Control Division
, Chicago, IL, pp.
677
686
.
7.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
8.
Kikuchi
,
N.
,
Nishiwaki
,
S.
,
Fonseca
,
J.
, and
Silva
,
E.
, 1998, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
401
417
.
9.
Wang
,
M.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
941
956
.
10.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin
.
11.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
12.
Duysinx
,
P.
, and
Bendsøe
,
O.
, 1998, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
(
8
), pp.
1453
1478
.
13.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1579
1605
.
14.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
15.
Yoon
,
G.
,
Kim
,
Y.
,
Bendsøe
,
M.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
139
150
.
16.
Pedersen
,
C. B.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2750
.
17.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2002, “
A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms
,”
Sens. Actuators, A
,
97–98
, pp.
599
609
. 0029-5981
18.
Luo
,
Z.
,
Chen
,
L.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Abdel-Malek
,
K.
, 2005, “
Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
2
), pp.
142
154
.
19.
Wang
,
M. Y.
, and
Chen
,
S. K.
, “Compliant Mechanism Optimization: Analysis and Design With Intrinsic Characteristic Stiffness,” Mech. Based Des. Struct. Mach. (to be published).
20.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
49
62
.
21.
Wang
,
M. Y.
, 2008, “
A Kinetoelastic Approach to Continuum Compliant Mechanism Optimization
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE
, NY, Paper No. DETC2008-49426.
22.
Chen
,
S. K.
, 2006, “
Compliant Mechanisms With Distributed Compliance and Characteristic Stiffness: A Level Set Approach
,” Ph.D. thesis, Chinese University of Hong Kong, Shatin, Hong Kong.
23.
Deepak
,
S.
,
Dinesh
,
M.
,
Sahu
,
D.
, and
Ananthasuresh
,
G.
, 2009, “
A Comparative Study of the Formulations and Benchmark Problems for Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
011003
.
24.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
0890-5452,
28
, pp.
245
280
.
25.
Kim
,
C.
,
Kota
,
S.
, and
Moon
,
Y.
, 2006, “
An Instant Center Approach Towards the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
542
550
.
26.
Kim
,
C.
,
Moon
,
Y.
, and
Kota
,
S.
, 2008, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
022308
.
27.
Lu
,
K.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
379
391
.
28.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
560
566
.
29.
Chen
,
S.
,
Wang
,
M.
, and
Liu
,
A.
, 2008, “
Shape Feature Control in Structural Topology Optimization
,”
Comput.-Aided Des.
0010-4485,
40
(
9
), pp.
951
962
.
30.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
36
49
.
31.
Hetrick
,
J.
, and
Kota
,
S.
, 1999, “
An Energy Efficiency Formulation for Parametric Size and Shape Optimization of Compliant Mechanism
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
229
234
.
32.
Slocum
,
A. H.
, 1992,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
33.
Moon
,
Y.
,
Trease
,
B.
, and
Kota
,
S.
, 2002, “
Design of Large-Displacement Compliant Joints
,”
ASME 27th Mechanism and Robotics Conferences
, Montreal, Canada.
34.
Ma
,
Z. D.
,
Kikuchi
,
N.
, and
Cheng
,
H. C.
, 1995, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
259
280
.
35.
Huang
,
S.
, and
Schimmels
,
J.
, 2000, “
The Eigenscrew Decomposition of Spatial Stiffness Matrices
,”
IEEE Trans. Robot. Autom.
,
16
, pp.
146
156
. 1042-296X
36.
Culpepper
,
M.
, 2004, “
Design of Quasi-Kinematic Couplings
,”
Precis. Eng.
0141-6359,
28
, pp.
338
357
.
37.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. -M.
, 2004, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
0021-9991,
194
, pp.
363
393
.
38.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
227
246
.
You do not currently have access to this content.