The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the past 15years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parametrizations, namely, the frame element-based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, and the ability to converge from an unbiased uniform initial guess are analyzed. Some observations and recommendations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.

1.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2003,
Topology Optimization: Theory, Methods, and Applications
,
Springer-Verlag
,
Berlin
.
2.
Ananthasuresh
,
G. K.
, 1994, “
A New Design Paradigm for Microelectromechanical Systems and Investigations on Compliant Mechanisms Synthesis
,” Ph.D. thesis, University of Michigan.
3.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kickuhi
,
N.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
1994 ASME Winter Annual Meeting, Symposium on MEMS, Dynamics Systems and Control
,
Chicago, IL
, Nov., DSC-Vol.
55–2
, pp.
677
686
.
4.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
1050-0472,
119
, pp.
238
245
.
5.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
493
524
.
6.
Larsen
,
U. D.
,
Sigmund
,
O.
, and
Bouwstra
,
S.
, 1997, “
Design and Fabrication of Compliant Mechanisms and Material Structures With Negative Poisson’s ratio
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
99
106
.
7.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
43
(
3
), pp.
535
559
.
8.
Kikuchi
,
N.
,
Nishiwaki
,
S.
,
Fonseca
,
J. O.
, and
Silva
,
E. C. N.
, 1998, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
401
417
.
9.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
121
(
2
), pp.
229
234
.
10.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2000, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
1
), pp.
36
49
.
11.
Lau
,
G. K.
,
Du
,
H. J.
,
Guo
,
N. Q.
, and
Lim
,
M. K.
, 2000, “
Systematic Design of Displacement-Amplifying Mechanisms for Piezoelectric Stacked Actuators Using Topology Optimization
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
9
), pp.
685
695
.
12.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2000, “
Topology Optimization of Nonlinear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
3459
.
13.
Canfield
,
S.
, and
Frecker
,
M.
, 2000, “
Topology Optimization of Compliant Mechanical Amplifiers for Piezoelectric Actuators
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
4
), pp.
269
279
.
14.
Sigmund
,
O.
, 2000, “
Optimum Design of Micro-electromechanical Systems
,” in
Mechanics for a New Mellennium, Proceedings of the 20th International Congress of Theoretical and Applied Mechanics
,
Chicago, IL
, Aug. 27–Sept. 2,
H.
Aref
and
J. W.
Phillips
, eds, pp.
505
520
.
15.
Pedersen
,
C. B. W.
, and
Buhl
,
T.
, and
Sigmund
,
O.
2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2705
.
16.
Poulsen
,
T. A.
, 2002, “
A Simple Scheme to Prevent Checkerboard Patterns and One-node Connected Hinges in Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
5
), pp.
396
399
.
17.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
18.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing a Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
6
), pp.
741
760
.
19.
Jang
,
G. W.
,
Jeong
,
J. H.
,
Kim
,
Y. Y.
,
Sheen
,
D.
,
Park
,
C.
, and
Kim
,
M. N.
, 2003, “
Checkerboard-Free Topology Optimization Using Non-Conforming Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
(
12
), pp.
1717
1735
.
20.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2004, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
12
), pp.
1579
1605
.
21.
Yoon
,
G. H.
,
Kim
,
Y. Y.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
3
), pp.
139
150
.
22.
Bruns
,
T. E.
, and
Sigmund
,
O.
, 2004, “
Toward the Topology Design of Mechanisms That Exhibit Snap-Through Behavior
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
3973
4000
.
23.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
337
348
.
24.
Luo
,
Z.
,
Chen
,
L.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Abdel-Malek
,
K.
, 2005, “
Compliant Mechanism Design Using Multi-Objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
30
(
i2
), pp.
142
154
.
25.
Zhou
,
H.
, and
Ting
,
K.-L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
753
759
.
26.
Ren
,
L.
,
Yang
,
R.
,
Mi
,
D.
, and
Guo
,
D.
, 2006, “
Topology Optimization Design for Micro Compliant Mechanism With Two Materials
,”
Proc. SPIE
0277-786X,
6042
, p.
60424A
.
27.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y. M.
, 2006, “
An Instant Center Approach Towards the Conceptual Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
3
), pp.
542
550
.
28.
Kim
,
C. J.
,
Moon
,
Y. M.
,
Kota
,
S.
, 2008, “
Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
1050-0472,
130
(
2
), p.
022308
.
29.
Chen
,
S.
, and
Wang
,
M. Y.
, 2007, “
Designing Distributed Compliant Mechanisms With Characteristic Stiffness
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
, Paper No. DETC2007–34437.
30.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes-A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
You do not currently have access to this content.